
Handling Churn in a DHT
USENIX Annual Technical Conference

June 29, 2004

Sean Rhea, Dennis Geels, 
Timothy Roscoe, and John Kubiatowicz

UC Berkeley and Intel Research Berkeley



What’s a DHT?

• Distributed Hash Table
– Peer-to-peer algorithm to offering put/get interface
– Associative map for peer-to-peer applications

• More generally, provide lookup functionality
– Map application-provided hash values to nodes
– (Just as local hash tables map hashes to memory locs.)
– Put/get then constructed above lookup

• Many proposed applications
– File sharing, end-system multicast, aggregation trees



How Does Lookup Work?

0…

10…

110…

111…

Lookup ID

Source

Response

• Assign IDs to nodes
– Map hash values to node 

with closest ID

• Leaf set is successors 
and predecessors
– All that’s needed for 

correctness

• Routing table matches 
successively longer 
prefixes
– Allows efficient lookups



Why Focus on Churn?
Chord is a “scalable 
protocol for lookup in a 
dynamic peer-to-peer 
system with frequent node 
arrivals and departures” 
-- Stoica et al., 2001

Authors Systems Observed Session Time
SGG02 Gnutella, Napster 50% < 60 minutes
CLL02 Gnutella, Napster 31% < 10 minutes
SW02 FastTrack 50% < 1 minute
BSV03 Overnet 50% < 60 minutes
GDS03 Kazaa 50% < 2.4 minutes



A Simple lookup Test
• Start up 1,000 DHT nodes on ModelNet network

– Emulates a 10,000-node, AS-level topology
– Unlike simulations, models cross traffic and packet loss
– Unlike PlanetLab, gives reproducible results

• Churn nodes at some rate
– Poisson arrival of new nodes
– Random node departs on every new arrival
– Exponentially distributed session times

• Each node does 1 lookup every 10 seconds
– Log results, process them after test



Early Test Results
• Tapestry (the OceanStore DHT) falls over completely

– Worked great in simulations, but not on more realistic network
– Despite sharing almost all code between the two

• And the problem isn’t limited to Tapestry:



Handling Churn in a DHT
• Forget about comparing different impls.

– Too many differing factors
– Hard to isolate effects of any one feature

• Implement all relevant features in one DHT
– Using Bamboo (similar to Pastry)

• Isolate important issues in handling churn
1. Recovering from failures
2. Routing around suspected failures
3. Proximity neighbor selection



Recovering From Failures
• For correctness, maintain leaf set during churn

– Also routing table, but not needed for correctness
• The Basics

– Ping new nodes before adding them
– Periodically ping neighbors
– Remove nodes that don’t respond

• Simple algorithm
– After every change in leaf set, send to all neighbors
– Called reactive recovery



The Problem With Reactive Recovery
• Under churn, many pings and change messages

– If bandwidth limited, interfere with each other
– Lots of dropped pings looks like a failure

• Respond to failure by sending more messages
– Probability of drop goes up
– We have a positive feedback cycle (squelch)

• Can break cycle two ways
1. Limit probability of “false suspicions of failure”
2. Recovery periodically



Periodic Recovery
• Periodically send 

whole leaf set to a 
random member
– Breaks feedback loop
– Converges in O(log N)

• Back off period on 
message loss
– Makes a negative 

feedback cycle 
(damping)



Routing Around Failures

• Being conservative increases latency
– Original next hop may have left network forever
– Don’t want to stall lookups

• DHT has many possible routes
– But retrying too soon leads to packet explosion

• Goal: 
1. Know for sure that packet is lost
2. Then resend along different path



Calculating Good Timeouts
• Use TCP-style timers

– Keep past history of latencies
– Use this to compute timeouts 

for new requests
• Works fine for recursive

lookups
– Only talk to neighbors, so 

history small, current

RecursiveIterative

• In iterative lookups, source 
directs entire lookup
– Must potentially have good 

timeout for any node



Virtual Coordinates
• Machine learning algorithm to estimate latencies

– Distance between coords. proportional to latency
– Called Vivaldi; used by MIT Chord implementation

• Compare with TCP-style under recursive routing
– Insight into cost of iterative routing due to timeouts



Proximity Neighbor Selection (PNS)
• For each neighbor, may be many candidates

– Choosing closest with right prefix called PNS
– One of the most researched areas in DHTs
– Can we achieve good PNS under churn?

• Remember: 
– leaf set for correctness
– routing table for efficiency?

• Insight: extend this philosophy
– Any routing table gives O(log N) lookup hops
– Treat PNS as an optimization only
– Find close neighbors by simple random sampling



PNS Results
(very abbreviated--see paper for more)

• Random sampling 
almost as good as 
everything else
– 24% latency 

improvement free
– 42% improvement for 

40% more b.w.
– Compare to 68%-84% 

improvement by using 
good timeouts

• Other algorithms more 
complicated, not much 
better



Related Work
• Liben-Nowell et al.

– Analytical lower bound on maintenance costs
• Mahajan et al.

– Simulation-based study of Pastry under churn
– Automatic tuning of maintenance rate
– Suggest increasing rate on failures!

• Other simulations
– Li et al.
– Lam and Liu

• Zhuang 
– Cooperative failure detection in DHTs

• Dabek et al.
– Throughput and latency improvements w/o churn



Future Work
• Continue study of iterative routing

– Have shown virtual coordinates good for timeouts
– How does congestion control work under churn?

• Broaden methodology
– Better network and churn models

• Move beyond lookup layer
– Study put/get and multicast algorithms under churn



Conclusions/Recommendations
• Avoid positive feedback cycles in recovery

– Beware of “false suspicions of failure”
– Recover periodically rather than reactively

• Route around potential failures early
– Don’t wait to conclude definite failure
– TCP-style timeouts quickest for recursive routing
– Virtual-coordinate-based timeouts not prohibitive

• PNS can be cheap and effective
– Only need simple random sampling



For code and more information:
bamboo-dht.org


	Handling Churn in a DHT
	What’s a DHT?
	How Does Lookup Work?
	Why Focus on Churn?
	A Simple lookup Test
	Early Test Results
	Handling Churn in a DHT
	Recovering From Failures
	The Problem With Reactive Recovery
	Periodic Recovery
	Routing Around Failures
	Calculating Good Timeouts
	Virtual Coordinates
	Proximity Neighbor Selection (PNS)
	PNS Results(very abbreviated--see paper for more)
	Related Work
	Future Work
	Conclusions/Recommendations
	For code and more information:bamboo-dht.org

