Handling Churn ina DHT

USENIX Annual Technical Conference
June 29, 2004

Sean Rhea, Dennis Geels,
Timothy Roscoe, and John Kubiatowicz

UC Berkeley and Intel Research Berkeley

What’s a DHT?

 Distributed Hash Table
— Peer-to-peer algorithm to offering put/get interface
— Assoclative map for peer-to-peer applications
* More generally, provide lookup functionality
— Map application-provided hash values to nodes
— (Just as local hash tables map hashes to memory locs.)
— Put/get then constructed above lookup
e Many proposed applications
— File sharing, end-system multicast, aggregation trees

How Does Lookup Work?

Source

« Assign IDs to nodes
— Map hash values to node
with closest ID
o | eaf set Is successors
and predecessors

— All that’s needed for
correctness
e Routing table matches
successively longer
prefixes
— Allows efficient lookups

Lookup ID

Why Focus on Churn?

Chord is a “scalable R Lifetime -
protocol for lookup in a Session
dynamic peer-to-peer “~ Time -
system with frequent node — e,
arrivals and departures Join Leave Join Leave
-- Stoica et al., 2001
Authors Systems Observed Session Time
SGG02 Gnutella, Napster 50% < 60 minutes
CLLO2 Gnutella, Napster 31% < 10 minutes
SWO02 FastTrack 50% < 1 minute
BSV03 Overnet 50% < 60 minutes
GDS03 Kazaa 50% < 2.4 minutes

A Simple lookup Test

o Start up 1,000 DHT nodes on ModelNet network
— Emulates a 10,000-node, AS-level topology
— Unlike simulations, models cross traffic and packet loss
— Unlike PlanetLab, gives reproducible results

e Churn nodes at some rate
— Poisson arrival of new nodes
— Random node departs on every new arrival
— Exponentially distributed session times
e Each node does 1 lookup every 10 seconds
— Log results, process them after test

Early Test Results

o Tapestry (the OceanStore DHT) falls over completely
— Worked great in simulations, but not on more realistic network
— Despite sharing almost all code between the two

* And the problem isn’t limited to Tapestry:

100 : T T

£ 5

Z 80 z Chord —— |

- 62h 1.6 h - 4 Bamboo

: g

™ 60 3.lh 47 min i z 3

= 40 , '._._ 2

- —

5 20 Consistent e z | —]

i e b :! .

. _ Completed —— P™) % oL =
Y § 16 32 64 128

0 50 100 150 200

Time (minutes) Median Session Time (min)

Handling Churn ina DHT

* Forget about comparing different impls.
— Too many differing factors
— Hard to i1solate effects of any one feature

e Implement all relevant features in one DHT
— Using Bamboo (similar to Pastry)

e |solate important issues in handling churn
1. Recovering from failures
2. Routing around suspected failures
3. Proximity neighbor selection

Recovering From Failures

 For correctness, maintain leaf set during churn
— Also routing table, but not needed for correctness

e The Basics
— Ping new nodes before adding them
— Periodically ping neighbors
— Remove nodes that don’t respond
e Simple algorithm
— After every change in leaf set, send to all neighbors
— Called reactive recovery

The Problem With Reactive Recovery

e Under churn, many pings and change messages
— If bandwidth limited, interfere with each other
— Lots of dropped pings looks like a failure
 Respond to failure by sending more messages
— Probability of drop goes up
— We have a positive feedback cycle (squelch)
e Can break cycle two ways

1. Limit probability of “false suspicions of failure”
2. Recovery periodically

Periodic Recovery

8 .

» Periodically send £ 7] hode |
whole leaf set to a g 5| 2‘“““f'1‘mr”h W'Mh
random member f : |j'h“.ﬂk»w'ﬂ M| || | ||
— Breaks feedback loop z LT =]
— Converges in O(log N) 010 T“{‘“H“‘“ 20

e Back off period on B aaryewres
message loss £
— Makes a negative E 3 | 47min 23min

feedback cycle g 2 | M.M
(damping) N U N _-_"_"_L‘_”'Ln’l_ 'i“'.“~-. :

—,
o’

0 10 20 30 40 50

Time (minutes)

Routing Around Fallures

* Being conservative increases latency
— Original next hop may have left network forever
— Don’t want to stall lookups
 DHT has many possible routes
— But retrying too soon leads to packet explosion
e Goal:

1. Know for sure that packet is lost
2. Then resend along different path

Calculating Good Timeouts

o Use TCP-style timers
— Keep past history of latencies
— Use this to compute timeouts
for new requests
« \Works fine for recursive
lookups
— Only talk to neighbors, so
history small, current

* In iterative lookups, source
directs entire lookup

— Must potentially have good
timeout for any node

Renwrisige

Virtual Coordinates

Machine learning algorithm to estimate latencies

— Distance between coords. proportional to latency
— Called Vivaldi; used by MIT Chord implementation

Compare with TCP-style under recursive routing
— Insight into cost of iterative routing due to timeouts

Fixed 55 ——
Vivaldi

TCP-style —%—

-~

1.5

Mean Latency (s)

(.5

{} I . 2 . i . A F—
2 4 8 16 32 64 128 256

Median Session Time (min)

Proximity Neighbor Selection (PNS)

* For each neighbor, may be many candidates
— Choosing closest with right prefix called PNS
— One of the most researched areas in DHTs
— Can we achieve good PNS under churn?

 Remember:
— leaf set for correctness
— routing table for efficiency?
* Insight: extend this philosophy
— Any routing table gives O(log N) lookup hops
— Treat PNS as an optimization only
— Find close neighbors by simple random sampling

PNS Results

(very abbreviated--see paper for more)

e Random sampling

almost as good as
everything else

— 24% latency
Improvement free

— 42% improvement for
40% more b.w.

— Compare to 68%-84%
Improvement by using
good timeouts

Other algorithms more
complicated, not much
better

Mean Latency (ms)

500
450
400
350
300
250

No PN§ —»—
Pastry tuning —=
?"'ﬁandnm 5 umplmrl :
p=t> Pastry join

Tapestry join —8—

GO0 8OO 1000 1200 1400
Bandwidth (bytes/s/node)

Related Work

Liben-Nowell et al.
— Analytical lower bound on maintenance costs

Mahajan et al.

— Simulation-based study of Pastry under churn
— Automatic tuning of maintenance rate

— Suggest increasing rate on failures!

Other simulations
— Lietal.
— Lam and Liu

Zhuang
— Cooperative failure detection in DHTSs

Dabek et al.
— Throughput and latency improvements w/o churn

Future Work

« Continue study of Iterative routing
— Have shown virtual coordinates good for timeouts
— How does congestion control work under churn?

* Broaden methodology
— Better network and churn models

 Move beyond lookup layer
— Study put/get and multicast algorithms under churn

Conclusions/Recommendations

* Avoid positive feedback cycles in recovery
— Beware of “false suspicions of failure”
— Recover periodically rather than reactively
* Route around potential failures early
— Don’t walt to conclude definite failure
— TCP-style timeouts quickest for recursive routing
— Virtual-coordinate-based timeouts not prohibitive
 PNS can be cheap and effective
— Only need simple random sampling

For code and more information:
bamboo-dht.org

	Handling Churn in a DHT
	What’s a DHT?
	How Does Lookup Work?
	Why Focus on Churn?
	A Simple lookup Test
	Early Test Results
	Handling Churn in a DHT
	Recovering From Failures
	The Problem With Reactive Recovery
	Periodic Recovery
	Routing Around Failures
	Calculating Good Timeouts
	Virtual Coordinates
	Proximity Neighbor Selection (PNS)
	PNS Results(very abbreviated--see paper for more)
	Related Work
	Future Work
	Conclusions/Recommendations
	For code and more information:bamboo-dht.org

