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Abstract

This paper addresses the problem of churn—the continu-
ous process of node arrival and departure—in distributed
hash tables (DHTs). We demonstrate through experiment
that existing DHT implementations break down at churn
levels observed in deployed peer-to-peer systems, con-
trary to simulation-based results. We present Bamboo,
a DHT that handles high levels of churn, and discuss
the manner in which it does so. We show that Bamboo
is able to function effectively for median node session
times as short as 1.4 minutes, while using less than 900
bytes/s/node of maintenance bandwidth in a 1000-node
system. This churn rate is faster than that observed in real
file-sharing systems such as Gnutella, Kazaa, Napster, and
Overnet. Since Bamboo’s bandwidth usage scales loga-
rithmically in the number of nodes, we expect this cost to
remain within the reach of dialup modems even for very
large systems. Moreover, in simulated networks without
churn, Bamboo achieves lookup performance comparable
with Pastry, an existing DHT with a similar structure.

1 Introduction

The popularity of widely-deployed file-sharing services
has recently motivated considerable research into peer-to-
peer systems. Along one line, this research has focused
on the design of better peer-to-peer algorithms, especially
in the area of structured peer-to-peer overlay networks or
distributed hash tables (e.g. [16, 19, 20, 23, 27]), which
here we will simply call DHTs. These systems map a
large identifier space onto the set of nodes in the system
in a deterministic and distributed fashion, a function we
alternately call routing or lookup. DHTs generally per-
form these lookups using only O(log N) overlay hops in
a network of N nodes where every node maintains only
O(log N) neighbor links, although others have explored
the tradeoffs in storing more or less state.

A second line of research into peer-to-peer systems has
focused on observing deployed networks (e.g. [3, 7, 11,

21]). An important result of this research is that such net-
works are characterized by a high degree of churn, gener-
ally defined as the rate at which nodes join and leave the
system. One important measure of churn is node session
time: the time between when a node joins the network un-
til the next time it leaves. Median session times as short as
a few minutes have been observed in deployed networks.

This paper makes two primary contributions. First,
we survey published studies of deployed peer-to-peer net-
works to derive requirements on the churn rates that DHTs
must handle if they are to replace current systems. We
then perform an empirical evaluation of the routing lay-
ers of existing DHT implementations, and we show that
these implementations are unable to withstand the short
session times observed in the wild. Beyond a certain level
of churn, lookups in existing systems either take exces-
sively long to complete, fail to complete altogether, or re-
turn inconsistent results. In addition, the ability of new
nodes to join the DHT is often impaired.

Second, we describe Bamboo, a DHT that performs
well under high levels of churn. Bamboo achieves this
goal through the following three features of its design:

1. Static resilience to failures

2. Timely, accurate failure detection

3. Congestion-aware recovery mechanisms

Static resilience means that Bamboo can continue to per-
form lookups after node failures, routing around them
even before recovery begins. To do so, however, it is
critical that the system accurately distinguish down nodes
from those with high loads or those across congested net-
work paths. Failing to notice failures quickly leads to
excessive lookup latencies, while assuming failure too
soon leads to congestion collapse. A combination of ac-
tive probing and recursive routing allows Bamboo to effi-
ciently make this distinction. Finally, Bamboo integrates
new nodes and recovers from the failure of old ones in a
congestion-aware manner. Proactive recovery—where a
DHT tries to react immediately to membership changes—
only adds additional stress to an already-stressed network.
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To avoid congestion collapse, Bamboo uses periodic algo-
rithms, scaling back maintenance periods automatically in
response to congestion.

This paper illustrates the importance of empirical test-
ing of real implementations, particularly with regard to
points 2 and 3 above. Existing studies of churn in DHTs
have used simulations that did not model the effects of
network queuing, cross traffic, or message loss. In our
experience, these effects are primary factors contributing
to DHTs’ inability to handle churn. Moreover, our mea-
surements are conducted on an isolated network, where
the only sources of queuing, cross traffic, and loss are the
DHTs themselves; in the presence of heavy background
traffic, such network realities will exacerbate the ability
of DHTs to handle even lower levels of churn.

We compare Bamboo with two popular DHT imple-
mentations for which working source code is available.1

It is possible that there exist DHT implementations with
churn resilience comparable to or better than Bamboo, but
we are unaware of any published work that demonstrates
their performance or discusses the techniques they use.
Furthermore, while we show that other DHTs suffer un-
der moderate levels of churn, we cannot pretend to be ex-
perts on their implementation and so can only speculate
on why they do so. Instead, we present results for these
DHTs because they were useful to us in gaining insights
into the problem when developing Bamboo. Our claim
is simply to have designed and built one DHT which can
handle churn well, using techniques which can be applied
to other, similar systems.

The rest of this paper is structured as follows: in Sec-
tion 2 we examine churn rates observed in peer-to-peer
file-sharing networks, derive robustness requirements for
a DHT in such an environment, and show the behavior
of an existing DHT implementation under these condi-
tions. In Section 3 we introduce Bamboo, focusing on its
hybrid geometry and datagram networking layer, and in
Section 4 we discuss in detail how Bamboo remains stable
and available under high rates of node churn. In Sections 5
we describe the experiments we performed to validate the
design of Bamboo and present the results. In Section 6 we
survey related work, and we conclude in Section 7.

2 Churn

What kinds of churn must a DHT expect in a real applica-
tion? To answer this question, we surveyed published em-
pirical studies of peer-to-peer file sharing networks. With
the exception of Overnet [2], which uses Kademlia [16],
the networks measured do not employ DHTs. Neverthe-

1Lamentably, we could find no freely-available, complete DHT that
used more than O(log N) state in return for shorter lookup paths.

less, the behavior seen in these networks is a useful guide
to what a robust DHT should handle. We first present
some definitions to help clarify the space.

2.1 Definitions

As illustrated in Figure 1, session time is the time between
when a node joins a network until it subsequently leaves
the network. In contrast, a node’s lifetime is the time from
when it enters the network for the first time until the time
at which it leaves the network permanently. Finally, a
node’s availability is often defined as the sum of its ses-
sion times divided by its lifetime.

The length of lifetimes in a system mostly affects long-
term application-level durability. For example, in a peer-
to-peer storage system, long lifetimes are a prerequisite;
without them, the maintenance traffic required to restore
data replication levels as hosts leave the system exceeds
available host bandwidth [4]. In contrast, a file sharing
application such as Overnet only stores the locations of
files, rather than the files themselves, in the DHT. As such,
there is little information to restore when a host leaves the
network, allowing the application to withstand short life-
times. Other peer-to-peer applications also have modest
storage requirements; for example, an instant messaging
application could use a DHT as its rendezvous service.
We might expect such an application to experience short
session times, too; like file sharing, when a user is not ac-
tively using the system, there is little motivation to pay the
bandwidth costs associated with participating.

Regardless of the application layer of a DHT, the rout-
ing layer is mostly sensitive to the length of session times.
Even temporary loss of a routing neighbor weakens the
correctness and performance guarantees of a DHT. Un-
available neighbors reduce a node’s effective connectivity,
forcing it to choose suboptimal routes and increasing the
destructive potential of future failures. Finding a replace-
ment for the lost neighbor is a priority, and this neighbor
maintenance makes up a significant portion of the band-
width consumed.

Since all applications depend on the routing layer, in
this work we focus on the effects of short session times.
We leave analysis of the effects of short lifetimes on other
layers as important future work.

2.2 Empirical studies

We use empirical studies of file-sharing networks to de-
rive requirements on handling churn for two reasons.
First, almost all deployed peer-to-peer systems of any
size today for which measurements are available are file-
sharing applications. Second, we are interested in the nat-
ural question of whether DHTs can replace the unstruc-
tured overlays in existing file-sharing applications.

2



Join Leave Join Leave
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Time time
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Figure 1: Metrics of churn. With respect to the routing
and lookup functionality of a DHT, the session times of
nodes are more relevant than their lifetimes.

First Author Systems Observed Session Time
Saroiu [21] Gnutella, Napster 50% ≤ 60 min.
Chu [7] Gnutella, Napster 31% ≤ 10 min.
Sen [22] FastTrack 50% ≤ 1 min.
Bhagwan [3] Overnet∗ 50% ≤ 60 min.
Gummadi [11] Kazaa 50% ≤ 2.4 min.

Table 1: Observed session times in various peer-to-peer
systems. The median session time ranges from an hour to
a minute.

Saroiu, Gummadi, and Gribble [21] presented the ear-
liest study we have found of session times in peer-to-peer
systems. Using active probing, they found the median ses-
sion time in both Napster and Gnutella to be around 60
minutes. Another active study of Napster and Gnutella by
Chu, Labonte, and Levine [7] found that 31% of observed
sessions were shorter than 10 minutes, and less than 5%
were longer than 60 minutes. On the other hand, they
observed a small fraction of sessions (less than 0.01%)
lasting thousands of minutes at a time.

Sen and Wang [22] used passive monitoring to observe
FastTrack traffic using routers in an ISP backbone. To
compute session length, they included all traffic less than
30 minutes apart from the same IP address, and found that
60% of nodes had a total session time of under 10 minutes
daily.

Bhagwan, Savage, and Voelker [3] performed an active
study of the Overnet system. The choice is significant
since nodes in Overnet are uniquely identified by names
that persist across sessions. As such, these names are
more suitable for many metrics than IP addresses which
vary over time due to DHCP, firewalls, etc. While this dis-
tinction is important for measuring node lifetimes, chang-
ing IP address involves leaving and rejoining a network,
so we believe the previous studies’ session time results are
still valid.

Since the Overnet study did not include session times,
we re-analyzed their data to extract them. This data con-
tains the results of active probes for 2,400 distinct Overnet
hosts every 20 minutes over a week. Marking the start of
a session as the transition from a host being unreachable
to being reachable, or as the change from one IP address
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Figure 2: FreePastry under churn. Shown is the percent-
age of lookups that complete in a 1000-node FreePastry
network under increasing levels of churn. Session times
for each churn period are indicated by arrows.

to another, we found a median session time of 60 minutes,
plus or minus the 20 minute probe period.

A study of Kazaa recently published by Gummadi et
al. [11] used passive measurement techniques to estimate
session times as the length of continuous periods during
which a node was actively retrieving files. They found
a median session length of only 2.4 minutes, and a 90th
percentile session length of 28.25 minutes.

The session times observed in the works referenced
above are summarized in Table 1. We conclude that a
peer-to-peer network built on a DHT should be robust
for session times from an hour down to a minute. Also,
with the exception of Overnet, session times seem to have
shortened over time. The relatively long length of Overnet
sessions may be because it is primarily a movie-sharing
service, and movies take longer to download than other
files such as music.

Neither the studies we have cited nor our analysis take
into account the possibility that sessions are cut short due
to network failures, and that a robust DHT would experi-
ence longer session times due to its own resilience. Never-
theless, we feel that our derived requirements are a useful
starting point for DHT designers.

2.3 Existing DHTs

Figure 2 shows one effect of churn on a robust, reason-
ably mature DHT: a 1000-node network of nodes run-
ning FreePastry on a cluster of 40 machines under Model-
Net [24] to simulate realistic network latencies and band-
widths. FreePastry is an open source implementation of
Pastry; in the remainder of this paper, we use “FreePas-
try” to refer to this particular implementation, and we use
“Pastry” to refer to the Pastry algorithm in general. The
graph shows the percentage of key lookups which suc-
cessfully return correct results against time. We create
node churn during the experiment over 30 minute peri-
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ods, separated by calm periods long enough for the DHT
to recover (10 minutes in this case). The churn rate is in-
creased for each period.

The graph in Figure 2 is shown with time on the x axis
to illustrate the nature of the tests we use in this paper.
Later, in Section 5, we will transform this graph to show
the metrics as a function of the churn rate, and we will
add numbers for Chord and Bamboo. We will show that
both Chord and FreePastry become unusable at the higher
levels of churn observed in real peer-to-peer networks, al-
though for different reasons.

We make a final comment on this graph. Between all
but the last two churn periods, FreePastry recovers com-
pletely, once again correctly completing all lookups. Both
Chord and FreePastry exhibit this behavior; so long as a
sufficient quiet period follows, they are able to withstand
rather significant network perturbations. The difficulty
with churn is that there is no such quiet period; the net-
work is in a continual state of recovery.

3 Bamboo Preliminaries

Bamboo is the DHT we have been building since January,
2003. It consists of just over 10,000 semicolons of Java,
of which about 3,300 make up the routing layer studied
in this paper. Before we discuss the merits of our design
with respect to handling churn, we do two things to set
the stage. First, we present the Bamboo geometry and
routing algorithm. As defined by Gummadi et al. [10],
the geometry of a DHT is the pattern of neighbor links
in the overlay network, independent of the routing algo-
rithms or state management algorithms used. Second, we
present the congestion-controlled networking layer which
Bamboo uses to communicate between nodes, since fea-
tures of its design are integral to the algorithms we discuss
later. In Section 4, we describe how Bamboo acquires and
maintains routing state, and how it uses that state to route
messages.

3.1 Network geometry

The Bamboo geometry is identical to that of Pastry, which
we briefly summarize here, following the notation of
Rowstron and Druschel [20] for consistency. We refer the
reader to that work for more details.

Each node in Bamboo is assigned a numeric identifier
from the range [0, 2160), derived either from the SHA-1
hash of the IP address and port on which the node receives
packets or from the SHA-1 hash of a public key. As such,
they are well-distributed throughout the identifier space.
Each node in the Bamboo network maintains a leaf set—
the set of 2k nodes immediately preceding and following
it in the circular identifier space. We denote this set by L,

if (L−k ≤ D ≤ Lk)
next hop = Li s.t. |D − Li| is minimal

else if (Rl[D[l]] 6= null)
next hop = Rl[D[l]]

else
next hop = Li s.t. |D − Li| is minimal

Figure 3: The Bamboo routing algorithm. The code
shown chooses the next routing hop in for a message with
destination D, where D matches the identifier of the local
node in the first l digits.

and we use the notation Li with −k ≤ i ≤ k to denote
the members of L, where L0 is the node itself.

In addition to its leaf set, each Bamboo node maintains
a routing table. Treating each identifier as a sequence of
digits of base 2b and denoting the routing table entry at
row l and column i by Rl[i], a node chooses its neigh-
bors such that the entry at Rl[i] is a node whose identifier
matches its own in exactly l digits and whose (l + 1)th
digit is i. Like Pastry, Bamboo tries to choose the node
closest to it in network latency from all nodes that can fill
each routing table entry.

Algorithmically, routing in Bamboo proceeds as shown
in Figure 3. To route a message with key D, a node first
checks whether D lies within its leaf set, and if so, for-
wards it to the numerically closest member of that set
(modulo 2160). If that member is the local node, rout-
ing terminates. If D does not fall within the leaf set, the
node computes the length l of the longest matching pre-
fix between D and its own identifier. Let D[i] denote the
ith digit of D. If Rl[D[l]] is not empty, the message is
forwarded on to that node. If neither of these conditions
is true, the message is forwarded to the member of the
node’s leaf set numerically closest to D.

We have described this routing in recursive terms
(where a message is forwarded by a series of nodes en
route to its destination), but it is of course possible to route
iteratively, where the originating node performs a series
of lookups to intermediate nodes before sending the mes-
sage directly to the destination [23]. However, the choice
of recursive routing in Bamboo turns out to be important
in handling churn, and we discuss it further in Section 4.2.

As discussed in [20], this routing table design performs
lookups in O(log N) hops, while the leaf set allows for-
ward progress (in exchange for potentially longer paths)
in the case that the routing table is incomplete. Moreover,
the leaf set adds a great deal of static resilience to the
Bamboo geometry; Gummadi et al. [10] show that with a
leaf set of 16 nodes, even after a random 30% of the links
are broken there are still connected paths between all node
pairs. Such static resilience is clearly useful in handling
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public static interface SendCallBack {
void send callback (Object user data, boolean success);

}

public void send (
Object msg, InetSocketAddress dst,
int tries, SendCallBack cb, Object user data);

public double est rtt ms (InetSocketAddress peer);

Figure 4: The Bamboo communications layer interface.
The layer makes up to tries attempts to send msg to dst,
calling send callback after an ACK or too many retries. It
also exposes the mean round-trip time to each peer.

failures in general and churn in particular, and it was the
reason we chose the Pastry geometry for use in Bamboo.2

3.2 Communications layer

Bamboo nodes communicate using UDP. Originally, we
chose UDP to avoid the difficulties we had encountered
with file descriptor limits while running many virtual
DHT instances over TCP on the same physical machine;
such virtualization is common in testing large networks on
limited physical resources and is quite useful for debug-
ging. Since that time, as explained in Section 4.2, we have
come to believe that the semantics of TCP are inappropri-
ate for a DHT; instead, what is needed is message-based,
unreliable, unordered, but congestion-controlled commu-
nication. The manner in which these semantics are pro-
vided is briefly described below, but we emphasize here
that it should be viewed only as an artifact of the system.3

In the style of TCP, the Bamboo communications layer
uses the time between when it sends message and the re-
ceipt of the corresponding ACK to maintain an exponen-
tially weighted average round trip time (RTT) and vari-
ance thereof for each peer. These values are made avail-
able to higher layers of the system. It computes round-trip
timeouts (RTOs) to decide when to retransmit a packet,
and it backs the RTO off exponentially with each timeout.
It maintains a congestion window in a similar manner to
the TCP slow-start algorithm, and it notifies the applica-
tion when a packet is acknowledged. The interface that
the communications layer exports is shown in Figure 4.

2We could also have used a pure ring geometry as in Chord, extend-
ing it to account for proximity in neighbor selection as described in [10].

3In fact, the semantics we desire are quite close to those provided by
DCCP [12] using TCP-like congestion control, and it is likely that we
would have used DCCP were it available, although we admit we have
not fully explored this possibility.

(1) function join (A, G) =
(2) G′ = nearest neighbor (A, G);
(3) B, P = lookup (G′, IDA);
(4) L = get leaf set (A);
(5) for i from 0 to |P | − 1
(6) l = length of longest matching prefix (IDA, IDPi

);
(7) Ri = Pi.get routing table level (l)

Figure 5: The Pastry join algorithm. The new node is A,
and its given gateway is G.

4 Bamboo under churn

Bamboo exhibits robustness under churn through the
combination of three key features: static resilience to fail-
ures, timely, accurate failure detection, and congestion-
aware recovery mechanisms. Static resilience provides
routability after failure even before recovery takes place,
and so allows the DHT to use the power of its own rout-
ing mechanism to enact that recovery. Below, we describe
the latter two features listed above and how they improve
Bamboo’s resilience to churn.

4.1 Congestion-aware recovery

Construction of a Bamboo network and the maintenance
thereof use the same algorithms; both the failure of an ex-
isting node and the appearance of a new one are viewed
as disruptive events from which the network must re-
cover. This decision yields economy of mechanism, sim-
pler code, and most importantly helps the network deal
with churn.

4.1.1 The Pastry join algorithm

Originally, Bamboo used the Pastry join algorithm (Fig-
ure 5). To motivate the new design, we first review Pas-
try’s algorithm and the challenges of implementing it. To
join an existing network a Pastry node A needs the IP ad-
dress and port of another node G that has already joined;
we call this node the gateway, or bootstrap node. A uses
G to find a closer gateway G′ and uses G′ to lookup its
own identifier IDA to find node B, from which it gets its
leaf set. It then builds its routing table by contacting the
nodes on the lookup path P . Pastry’s geometry ensures
that the identifiers of the nodes along the lookup path for
IDA share successively longer prefixes with IDA, making
them appropriate candidates to fill A’s routing table.

Castro et al. [5] define a probe as the process with
which one node determines the latency to another node,
independent of network congestion. They estimate that
a Pastry node must perform an average of 26–31 probes
to join the network and that an average of 50–70 exist-
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ing nodes issue an average of one or two probes each in
response to the join. While this number is not large, ob-
taining a good probe result is difficult. The quality of the
probe matters because after the join, the neighbor choices
are infrequently re-evaluated. In an uncongested network
the minimum of a few ping times may suffice, but under
congestion the situation is more complex since probes in-
terfere with each other.

Besides active probing, there are other options for es-
timating or otherwise obtaining information on network
latencies [6, 8, 13], but performing a direct comparison of
these approaches with Bamboo’s existing network mea-
surement facility is a topic for future work.

4.1.2 Bootstrapping Bamboo

Rather than solve this network measurement problem, we
decided to avoid it in Bamboo. A new Bamboo node per-
forms only lines 1, 3, and 4 of the Pastry join algorithm
in Figure 5, using G for G′ on line 3. It adds the nodes
in P to its routing table, but sends no latency probes. Af-
ter this quick bootstrapping, it considers itself joined; its
routing table is then filled and optimized through a contin-
uous process that stops only when it leaves the network.
Before describing this process in full, we first examine the
benefits.

First, to route efficiently—in O(log N) hops—it suf-
fices to fill each routing table entry with any node of the
appropriate prefix. As we show, this can be done quickly
and cheaply, and so we decouple it from the more expen-
sive process of finding nearby neighbors. We say the lat-
ter process allows a node to route quickly, but its benefit
relative to the gain obtained in going from leaf-set-only
routing—which requires O(N) hops—to efficient rout-
ing is not large, so it we give it lower priority. Second,
since the choice of neighbor to fill any entry of the routing
table is continually re-evaluated, the importance of any
one measurement is less. An early mistake causes a sub-
optimal choice only until later measurements correct it.
Finally, churn is the normal state of the network. Tuning
the routing table at join time to include only the closest
available neighbors is tuning to a state that is sub-optimal
moments later. Under these conditions, we believe a con-
tinual optimization process is more appropriate.

In the following sections, we describe the components
of this optimization process. We construct the process
from short, simple actions because they are less likely to
be interrupted by failures and more likely to return im-
provements relevant to the current state. In some cases
we can show analytically that the system converges to a
good state quickly; in others we study the convergence
through experiment.

A

B D

C

E

Figure 6: The need for pushing and pulling leaf sets. Ar-
rows represent neighbor links. Unless leaf sets are also
pulled, C’s leaf set is never corrected.

4.1.3 Leaf set maintenance

Bamboo’s leaf set is kept current by an epidemic algo-
rithm [9]: every period a node sends its entire leaf set
to a randomly-chosen neighbor in the set, which in turn
replies with the contents of its leaf set.4 We call the first
message a leaf set push and the reply a leaf set pull. The
information shared in this transaction is the set of nodes
in a particular area of the circular name space. In the pub-
lished descriptions of Pastry, nodes only push leaf sets;
there does not appear to be a corresponding pull [15].

Pulling leaf sets results in greater resilience to arbitrary
bad states. An example is shown in Figure 6; indeed, it
was observing this kind of state which led us to imple-
ment pulls. Five nodes are shown in a system with k = 1;
the arrows represent each node’s successor and predeces-
sor according to its leaf set. Node C is unavailable during
which time B and D join. C subsequently becomes avail-
able again, but nodes B and D have no knowledge of it,
whereas C still thinks its neighbors are A and E. If leaf
sets are only pushed, no node in this system will tell C
about the existence of B or D, and its leaf set will remain
incorrect. With pulls, however, the first time C contacts
A it will learn about B; the same is true for E and D.

In Bamboo, the bandwidth consumed by neighbors of
a new node A is not increased by the join operation, apart
from A’s initial lookup. When A joins the DHT, it obtains
an initial leaf set from the node closest to its identifier,
but does not immediately announce its presence to other
nodes. Instead, these nodes learn about A through nor-
mal leaf-set push and pull messages. When many nodes
join simultaneously, this technique stresses the underlying
physical network far less than if each joining node were
to actively announce itself to all others. In other words,
we decouple maintenance bandwidth from churn rate as
much as possible, making it depend only on leaf-set size.

Furthermore, this technique does not affect the con-
sistency of the ring for long: consider a new node A
that joins a previously-consistent Bamboo network and
receives its leaf set from a node B. Since B’s leaf set
was already consistent, A can construct a consistent leaf

4We explore the sensitivity of Bamboo’s performance to the fre-
quency of this and other periodic processes in Section 5.4.
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(1) function global tuning (A, R, l, d) =
(2) I = random identifier ();
(3) I ′ = IDA[0, l − 1] + d + I[l + 1,|I| − 1];
(4) B = A.lookup (I ′);
(5) if Rl[d] = null or B.closer than (Rl[d])
(6) Rl[d] := B;

Figure 7: Global tuning. To improve routing table entry
Rl[d], node A looks up an identifier with its first l digits,
d for its l+1st digit, and otherwise all random digits. The
returned node is used if it is closer than the existing entry.

set immediately. Likewise, B’s leaf set is made consistent
again by the inclusion of A. Now consider the k nodes in
either side of A’s new leaf set. Each node in this set sends
each push to another node in the set with probability at
least 1/2 (the other half of the time the push goes to a node
outside the set), so the process of spreading knowledge
of A behaves like a simple epidemic with period at most
twice the push period. Such epidemics are known to “in-
fect” all nodes in O(log k) time for a set of k nodes [17],
so we can conclude that the leaf sets in the affected area
of the ring will quickly return to consistency. Of course,
under churn conditions this static argument does not hold,
and the analysis of convergence times is more difficult,
but our experiments in Section 5 show that it is still rea-
sonable.

4.1.4 Routing table maintenance

Unlike leaf sets, routing tables in Bamboo are asymmet-
ric; the nodes in the routing table for a node A do not nec-
essarily have A in their routing tables. Moreover, there
are generally many available neighbors for each entry in
a A’s routing table, and ideally A would choose the one
closest in network latency. As such, a simple, periodic,
pair-wise sharing of routing tables is insufficient to keep
them well tuned, and more sophisticated algorithms are
necessary. In Bamboo, we use two such algorithms, one
called global tuning of routing tables, and the other called
local tuning.

Global tuning. The global tuning algorithm will always
bring a static network to an optimal state but is slow rela-
tive to local tuning. It has no equivalent in the Pastry al-
gorithm, but it is similar in character to what Chord calls
stabilization, using the fact that Bamboo can always route
to the node whose identifier is closest to any destination
identifier so long as all leaf sets are correct.

As shown in Figure 7, to fill or improve routing table
entry Rl[d], node A does a lookup on an identifier with
its first l digits, d for its l + 1st digit, and otherwise all
random digits. The returned node is used if it is closer

(1) function local tuning (R, l) =
(2) d = random digit ();
(3) L = Rl[d].get routing table level (l);
(4) for i from 0 to |L| − 1
(5) if Rl[i] = null or L[i].closer than (Rl[d])
(6) Rl[d] := L[i];

Figure 8: Local tuning. To improve routing table level Rl,
a node choses a random entry of level Rl and gets level l
of its routing table, then probes each returned entry to see
if it is closer than the existing entry.

A
B

C D

Figure 9: A problem for local tuning. If A joins using D
as its gateway, its initial level-0 neighbors are the same as
those of D; assume that these are all within the dashed
line. In local tuning, A contacts a level-0 neighbor, e.g.
C, and asks it for its level-0 neighbors. A would learn
about B in this manner. However, there may be no path
from the D’s ideal neighbors to those of A.

than the existing entry. For example, to fill a hole in level-
1, digit-4 of its routing table, the node 0x123 might do
a lookup on identifier 0x147. It can be shown that with
probability ≥ 1/2 this lookup will return some node that
starts with 0x14 if one exists in the network, and it will
return the closest such node with non-zero probability.

Local tuning. The local tuning algorithm is similar to
Pastry’s routing table maintenance, except that Bamboo
performs it incrementally and more often. As shown in
Figure 8, a node A periodically contacts a random mem-
ber Rl[d] of A’s routing table and requests all of its entries
from level l. If a returned entry fills a hole in A’s routing
table, it is used; the other entries are probed for latency
before possibly replacing existing entries in A’s routing
table.

Local tuning returns many possible neighbors for each
request, so it can fill most holes quickly. Moreover, it is
useful for improving routing tables when most of the ta-
bles in the system are already near optimal. For example,
say that node A has close neighbors for all digits on the
0th level of its routing table except for some digit d. If any
of its existing neighbors at level-0 have a close neighbor
starting with digit d, then (assuming the triangle inequal-
ity) if A performs local tuning with one of those neigh-
bors, it will discover the neighbor starting with digit d and
be able to improve its routing table.
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However, local tuning is not sufficient to improve rout-
ing tables in all systems. A simple bad scenario is shown
in Figure 9. A joins using node D as its gateway. Its first
set of level-0 neighbors—obtained through local tuning—
are the same as those of D; assume that these all fit into
the (physical network) area bounded by the dashed line,
and that A’s ideal level-0 neighbors all fit within the dot-
ted line. In local tuning, A contacts an existing level-
zero neighbor, e.g. C, and asks for all of its level-zero
neighbors. In this example, A would learn about B in this
manner. Since there may be no path through these level-0
neighbor links from D’s ideal neighbors to those of A, A
needs a way to jump across gaps in this graph of level-0
neighbor links.

Global tuning helps, eventually picking a node on A’s
side of the gap. However, in the worst case, if A lies
close to some small number of other nodes, all of which
are widely separated from the remainder of the network,
and node A is initially unaware of these physically close
nodes, it is unlikely that it will learn about them in a timely
manner. We quantify the extent of this problem through
simulation in Section 5, but finding a new algorithm which
helps A discover these close neighbors more quickly—
while sharing the continual-optimization style of global
and local tuning—is an important subject for future work.

4.1.5 Reacting to congestion

Each Bamboo node keeps track of whether it has a leaf
set push-pull, global routing table tuning request, or lo-
cal routing table tuning request in progress at any given
time, and it does not start a subsequent operation until it
has completed the previous one of the same type or until it
has decided the associated neighbor has left the network.
This means that a given set of periods set the maximum
bandwidth consumed by the node for maintenance, but the
actual bandwidth consumed may be lower in the presence
of congestion. In our future work, we would like to ex-
plore combining our techniques with automatic setting of
periods as by Mahajan, Castro, and Rowstron [15]. In the
meantime, we study Bamboo’s sensitivity to the setting of
these periods in Section 5.4.

4.2 Timely, accurate failure detection

The routing algorithm itself is only one part of how rout-
ing is actually performed in practice; we must also specify
what to do in the case of failures. In a traditional client-
server system, such as NFS, the server does not often fail,
and when it does there are few options for recovery. If a
response to an NFS request is not received in the expected
time, the client must usually try again with an exponen-
tially increasing timeout value.

In a peer-to-peer system, in contrast, churn is the norm,
and quite often requests will be sent to a node that has left
the system, possibly forever. At the same time, a DHT
with routing flexibility (static resilience) has many alter-
nate paths available to complete a lookup. Consequently,
backing off the request period is not only an insufficient
solution for handling request timeouts, but a node often
has the opportunity to immediately retry a request through
a different neighbor in the event of a timeout.

Before routing to a different neighbor, a node must en-
sure that the timeout for the first request was judiciously
selected. If it is too short, the node to which the original
was sent may be yet to receive it, may be still processing
it, or the response may be queued in the network. If so,
injecting additional requests into the system may cause
further dropped packets, resulting in more requests being
retransmitted, eventually leading to congestion collapse.
Conversely, if the timeout is too long, the requesting node
may waste time waiting for a response from a node that
has left the network. If the request rate is fixed, these long
waits cause unbounded queue growth on the request node
that might be avoided with shorter timeouts.

For these reasons, nodes should accurately choose
timeouts such that a late response is indicative of node
failure, rather than network congestion or processor load.
Bamboo chooses such timeouts through two complemen-
tary techniques. First, it performs active probing through
the user-level networking layer. As discussed above, this
layer maintains an exponentially weighted mean and vari-
ance of the response time for each neighbor with which
the local node communicates. When actual traffic—
lookup requests, leaf set changes, etc.—is being sent to
some neighbor, that traffic is used to maintain this timing
information; in its absence, dummy requests are sent (ev-
ery 4 seconds by default). As a result, a Bamboo node
always has a recent estimate of the response time for each
of its neighbors.

Of course, it is infeasible for every node in the DHT
to actively probe every other node at scale. This dilemma
is overcome by Bamboo’s use of recursive, rather than it-
erative, routing. In recursive routing, a lookup request is
forwarded from node to node until it reaches its destina-
tion. In contrast, in iterative routing, the querying node
contacts each intermediate node directly. Since a node
has only O(log N) neighbors, the use of recursive routing
allows a Bamboo node to only communicate with a small
number of peers, and active probing is feasible.

In contrast, with iterative routing, a node must poten-
tially have a good timeout for any other node in the net-
work, and it is not yet clear how good estimates can be ob-
tained. One approach is the use of a synthetic coordinate
system as in Chord [6, 8]; this algorithm uses machine
learning to predict the latency to arbitrary hosts though
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measured distances to other hosts. A concern with this
approach is that the round-trip delay to a host during pe-
riods of high network congestion or end-host load can be
significantly longer than the usual delay. If such periods
are short relative to the convergence time of the estimator,
there is a danger of spurious retransmissions during these
high congestion periods—precisely when retransmissions
are most disruptive to the system. To our knowledge, the
temporal estimation error of these algorithms has not been
studied; such a study would be valuable to DHT imple-
mentations using iterative routing.

4.3 Summary

Before continuing to the experimental portion of this pa-
per, we take a minute to review the key features of our de-
sign. First, Bamboo nodes acquire and maintain neighbor
state by several congestion-aware, continuous optimiza-
tion processes. This process is divided into separate con-
cerns, first producing correctness through maintenance of
the leaf sets, then producing efficiency by filling the rout-
ing table, and finally tuning routing table entries for prox-
imity. In all cases, the rate at which these messages are
sent is capped and is further scaled back in response to
congestion or load. Second, Bamboo nodes actively probe
their neighbors to compute good timeout values, and by
using recursive routing they avoid sending messages to
nodes for which they do not have such timeouts.

5 Results

In this section we demonstrate that Bamboo can in fact
handle churn for session times as short as a few minutes
and show results for other DHTs for comparison. We
then examine the design factors responsible for this per-
formance, show Bamboo’s sensitivity to the length of its
computed maintenance periods, and examine the costs our
design incurs over other DHTs when run on churn-free
networks.

5.1 Experimental setup

Our platform for measuring DHT performance under
churn is a cluster of 40 IBM xSeries PCs with Dual 1GHz
Pentium III processors and 1.5GB RAM, connected by
Gigabit Ethernet, and running either Debian GNU/Linux
or FreeBSD. We use ModelNet [24] to impose wide-area
delay and bandwidth restrictions, and the Inet topology
generator5 to create a 10,000-node wide-area AS-level
network with 500 client nodes connected to 250 distinct

5http://topology.eecs.umich.edu/inet/

stubs by 1 Mbps links. To increase the scale of the exper-
iments without overburdening the capacity of Modelnet
by running more client nodes, each client node runs two
DHT instances, for a total of 1,000 DHT nodes.

We measure Bamboo, FreePastry6 release 1.3, and a re-
cent CVS snapshot (8/4/2003) of Chord7. Chord is run
with the default 10-node successor lists and with the loca-
tion cache disabled (using the -F option), since the cache
causes poor performance under churn. FreePastry is run
using the default 24-node leaf sets and a logarithm base
of 16. Bamboo is run with 8-node leaf sets, and with a
logarithm base of either 2 or 16, called “base 2” or “base
16” mode, respectively, in the results.

Our control software uses a set of wrappers which com-
municate locally with each DHT instance to send requests
and record responses. Running 1000 DHT instances on
this cluster (12.5 nodes/CPU) produces CPU loads below
one, except during the highest churn rates. Ideally, we
would measure larger networks, but 1000-node systems
already demonstrate problems that will surely affect larger
ones.

In an experiment, we first bring up a network of 1000
nodes, one every 1.5 seconds, each with a randomly as-
signed gateway node to distribute the load of bootstrap-
ping newcomers.8 Each live node continually performs
lookups for identifiers chosen uniformly at random, timed
by a Poisson process with rate 0.1/second, for an aggre-
gate system load of 100 lookups/second. Nodes may is-
sue multiple outstanding lookups, and our control wrapper
does not timeout, cancel or retry any lookups.

We then repeatedly churn nodes until the system per-
formance stabilizes; this phase normally lasts 20-30 min-
utes, but can take an hour or more. A new node is started
each time a node is killed, maintaining the total network
size at 1000. Node death events are chosen by a Pois-
son process, and are therefore uncorrelated and bursty.
This model of churn is similar to that described by Liben-
Nowell et al. [14]. We used churn rates of 8 deaths/second
to 1 death/minute, corresponding to median session times
of 1.4 minutes to 3 hours.

5.2 Bamboo under churn

Figure 10 shows the effects of churn on each DHT running
under ModelNet. We focus on four areas—the number
of started nodes which have successfully joined the net-
work and begun issuing lookups, the percent of lookups
that complete successfully, the consistency of completed

6http://www.cs.rice.edu/CS/Systems/Pastry/
7http://www.pdos.lcs.mit.edu/chord/
8We do not attempt to enforce proximity between a new node and

its gateway, as suggested for best FreePastry performance; this decision
only effects the proximity of a FreePastry node’s neighbors, not the effi-
ciency of its routing.
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Figure 10: Metrics of success. The percentage of started nodes which successfully join (a), the percentage of lookups
that return some (possibly incorrect) result (b), the percentage of completed lookups that are also consistent (c), the
mean latency of completed lookups (d), the 95th percentile latency of completed lookups (e), and the bandwidth used
per node (f). Each experiment was run three times. Error bars show mean and standard deviation across runs.

lookups, and the latency of completed lookups—all while
varying the rate of churn. Under FreePastry and Bamboo,
whether a node has joined the DHT is defined by whether
the join function has returned. Under Chord, we say the
network has joined when it has received its successor’s
successor list. This definition is the same as used by the
DHASH layer build atop Chord. In all cases, the failure of
a node to join is ignored if it is killed within two minutes
of joining. Each point in Figure 10 represents the mean
value over at least three trials; the error bars represent one
standard deviation.

A lookup is said to complete if any result is returned.
To measure lookup consistency, each lookup is simulta-
neously performed by ten different nodes in the network
and the results are compared (since our tests run on a
cluster, the machines involved have closely synchronized
clocks). If there is a majority among the results, any re-
sult not in the majority is considered an inconsistency; if
there is no majority, all results are considered inconsis-
tent. For some applications (e.g. DHASH) this notion of
consistency is more strict then necessary, and we hope to
investigate other, less strict definitions in the future. The
latency of a lookup is simply the time from which it is
issued until some result is returned.

Bamboo handles all the churn rates shown quite well.
Its percentage of nodes joined never falls below 94%, it
percentage of lookups completed never falls below 97%,

it percentage of lookups that are consistent never falls be-
low 95%, and its 95th percentile latency never exceeds 9
seconds. At the moment, our testing code is unable to pro-
duce median session times much shorter than 1.5 minutes,
but we are working to extend it in order to find the point
at which Bamboo collapses under the load.

For comparison, we note that Chord shows similar
curves to Bamboo for percentage joined, completed, and
consistent, except that they fall off a factor of 4 sooner.
More interestingly, Chord’s latency seems to fall off far
more quickly with increasing churn than Bamboo’s. With
respect to latency, Chord and Bamboo differ in two key
respects: proximity in neighbor selection, and iterative
vs. recursive routing. The proximity of Bamboo’s neigh-
bors only gets worse with increasing churn, as there is
less time to optimize the routing table. Algorithmically,
recursive routing should be no more than a constant factor
faster than iterative. Instead, we believe the divergence in
latency occurs because of the difficultly in computing ac-
curate message timeouts in iterative routing; we explore
this hypothesis in Section 5.3.2.

Finally, it is clear that FreePastry can handle churn with
median session times longer than 90 minutes, but that
around 45 minutes it begins to suffer, and for median ses-
sion times of 23 minutes or less it has completely col-
lapsed, completing less than 30% of the lookups issued to
it. It is also clear that FreePastry is significantly slower
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than Chord or Bamboo, but we believe that it is so be-
cause it uses Java RMI for communication between nodes,
whereas the other two DHTs use custom messaging lay-
ers. We believe Pastry’s use of proactive recovery is the
cause of its difficulty with high rates of churn; we explore
this hypothesis in Section 5.3.1.

5.3 Causes of failure

In this section we investigate some of the ways in which
a DHT can respond to churn and demonstrate the impor-
tance of the decisions we have made in building Bamboo.

5.3.1 Proactive vs. periodic recovery

Since churn is a process of nodes joining and leaving a
network, we investigate the reaction of each DHT to join
and leave events. By doing so, we hope to gain insight
into the reasons behind their performance under churn.

Figure 11.a shows the per-node bandwidth usage of
1000-node Chord, FreePastry, and Bamboo networks un-
dergoing the simultaneous failure of 200 nodes. Accord-
ing [20], when a Pastry node A notices that one of its
neighbors B has failed, it contacts another neighbor to
retrieve a replacement for B. We call this type of recov-
ery proactive, in that node A is proactively seeking a re-
placement for B as soon as it notices that B is down. In
contrast, Chord and Bamboo perform periodic recovery;
on a periodic basis, they “recover” a neighbor whether it
is down or not. In Chord, this process is called the stabi-
lization of that neighbor, whereas in Bamboo it is the leaf
set and routing table maintenance algorithms described in
Section 4.

In the sense that a join represents a modification of the
network, we can also speak of the process of integrating
a new node as a recovery—a movement of the network
from a bad state to a good one. Figure 11.b shows the per-
node bandwidth usage as 200 new nodes join a network
of 1000 existing ones. The difference between FreePastry
and the other two networks is similar to the failure case.
As discussed in Section 4.1.1, on a join, a Pastry node tries
to immediately create a good routing table, asking other
nodes for their routing state, pinging several nodes for
proximity, etc. Moreover, existing Pastry nodes ping the
new node. Once again, we call this process a proactive ap-
proach. In contrast to Pastry, both Chord and Bamboo un-
dergo a more periodic approach to integrating themselves
into the network. Using the same periodic processes used
to recover from failures, the nodes in these DHTs period-
ically discover new, more appropriate neighbors.

The distinction between these two methods of recov-
ery is important because the appearance of a node being
down and the bandwidth used by the network are not in-
dependent. If the failure of a node causes the network to
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Figure 12: The costs of poorly-chosen timeouts. For time-
outs which are too long, latency increases dramatically.
For timeouts which are too short, maintenance messages
get lost and the network partitions.

use more bandwidth in attempt to recover, some packets
may be dropped. If those drops cause timeouts which are
interpreted as other failures, a positive feedback loop is
formed and the network may collapse. Initially, Bamboo
was implemented to recover from joins and leaves in the
same manner as Pastry, and it was our observation of such
a positive feedback loop (and our experience testing the
Chord implementation) that lead us to redesign the Bam-
boo neighbor maintenance algorithms in the first place.

At low rates of churn, or where bandwidth is plentiful,
proactive recovery brings a network back into consistency
more quickly than periodic recovery. However, Figure 10
shows that Bamboo’s percentage of lookups completed
and consistent are quite high for low rates of churn. Since
its periodic recovery style is also effective at high rates of
churn, we see it as a clear advantage over proactive recov-
ery.

5.3.2 Message timeouts

In the previous section we argued that proactive neigh-
bor recovery can inhibit a DHT’s ability to handle churn,
motivating the periodic algorithms in Section 4. In this
section we give evidence to support the claim of Sec-
tion 4.2—that accurate message timeout values are also
important for handling churn. By using recursive routing,
a Bamboo node is able to communicate only with its im-
mediate neighbors, nodes for which it maintains accurate
timeouts. This section thus also shows the importance of
recursive routing to Bamboo’s robustness under churn. As
we discussed in Section 4.2, we do not mean to imply that
iterative routing cannot work under churn, rather that ac-
curate timeout computation will be essential in iterative
routing as well, and that it is less clear how to do it in
iterative systems.

To investigate the cost of inaccurate timeouts, we per-
turbed the timeout values computed by Bamboo’s net-
working layer as follows. As before, the timeouts for each
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Figure 11: Proactive vs. periodic recovery. Pastry performs proactive recovery, which tries to correct inconsisten-
cies as they are discovered, whereas Chord and Bamboo perform periodic recovery. Proactive recovery can lead to
congestion collapse if recovery operations overwhelm the available bandwidth.

message are computed in a manner similar to TCP, as a
function of the exponentially weighted mean round-trip
time and variance thereof. However, in this experiment
we also apply a perturbation factor to these timeouts, mul-
tiplying each computed timeout by a factor of f . We then
apply a 20 minute period of churn with 12-minute median
session times and observe the resulting consistency and
95th percentile latency.

Figure 12 shows the results of this experiment. It is
clear that a small error to either side of the correct value is
sufficient to impair the DHT’s ability to handle churn. For
timeouts which are too long, latency increases dramati-
cally. For timeouts which are too short, maintenance mes-
sages get lost and the network partitions.9 We conclude
from Figure 12 that an absolute timeout error of 10× is
sufficient to inhibit the DHTs ability to handle churn.

5.4 Sensitivity to maintenance periods

Our final churn experiment examines the sensitivity of
Bamboo’s performance under churn to the frequency of
its maintenance periods. By default, Bamboo pings each
neighbor every 20 seconds, pushes its leaf set to a random
neighbor every 4 seconds, and performs local and global
turning once every 10 and 20 seconds, respectively. In
Figure 13, we show the 5th, 50th, and 95th percentile la-
tencies for lookups under various median session times
using the default periods under the title “1x”. Also shown
is Bamboo’s performance when these periods are multi-
plied by a factor of 2, 4, or 8. When periods are backed off
by a factor of 8, median lookup latencies suffer by around
a factor of 2.4, but 95th percentile latencies suffer by a
factor of 7.3. Not shown are the percentage of lookups
that are both completed and consistent, which drops from

9If we could separate routing messages from maintenance ones, it
is possible we would only see latency growth for too-short timeouts as
well. Unfortunately, making this distinction in the Bamboo networking
layer is non-trivial; we hope to investigate this claim in the future.
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Figure 13: Sensitivity to maintenance periods. “1x”
shows the data from Figure 10.d. “nx” shows the results
with all maintenance periods lengthened by a factor of n.

99% at the highest churn rate shown to 93% at the same
churn rate with 8 times less frequent maintenance.

5.5 Static network performance

Finally, we examine the performance of Bamboo on a net-
work without churn. Our goal is to show that the Bamboo
routing table maintenance algorithms, designed for high-
churn networks, also perform well under low churn. Our
goal is the published performance of Pastry, a DHT with
the same geometry as Bamboo.

Our experimental setup is as follows. We used an event-
driven simulator to run Bamboo nodes over a GT-ITM
topology [25]. We used the ts16384-6 and ts16384-8
topologies used by Gummadi et al. [10] that were gen-
erated with widely different parameters, allowing us to
gauge the sensitivity of our algorithms to the underlying
network topology. This simulator calculates network de-
lays according to bandwidth and latency values assigned
to paths but does not model queuing effects. Since our
other experiments have shown that Bamboo demonstrates
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only modest bandwidth usage, we do not believe this lim-
itation should affect the accuracy of our results. To per-
form this experiment, we simultaneously start 1000 nodes
all through the same gateway and observe the routing ta-
bles over time. Like Pastry nodes, Bamboo nodes which
join through nearby gateways into a network of nodes
with already-optimized routing tables will quickly opti-
mize their own routing tables. Since this test uses only
one gateway for all nodes, and starts them all at the same
time, it is thus a pessimistic assessment of the expected
time for a Bamboo node to optimize its routing tables in a
static network.

Figure 14 shows the results. On the left, we show the
percentage of fillable routing table entries across all nodes
which are unfilled as a function of time. When this value
goes to zero, Bamboo can route to all destinations using
O(log N) hops in an N -node network. In the center, we
show the mean relative proximity of the routing table en-
tries over time. A value of x indicates that the average
routing table neighbor is x times further away than the
closest available node for that entry. Under certain net-
work assumptions [18] relative proximity of neighbors al-
lows Bamboo to route in time proportional to the under-
lying network distance. On the right, we confirm this as-
sertion by plotting the aggregate routing stretch. A stretch

of x means that a route that started on node A and ended
on node B took a path through the physical network that
was x times longer than the direct path between A and B.
The values shown are the 5th, 50th, and 95th percentiles.
The mean stretch after 10 minutes for both topologies is
1.79; for a similar topology Pastry has been shown to have
a mean stretch of 1.59, an 11% improvement over Bam-
boo [5]. Developing new routing table maintenance al-
gorithms to close this performance gap is an important
aspect of future work, but in the meantime we view this
slight inefficiency as a small cost to pay for resilience to
churn.

Our final experiment for static networks explores the
relative benefits of the global versus local routing table
tuning algorithms. Figure 15 shows the same metrics as
Figure 14, but comparing Bamboo’s performance using
only the global tuning algorithm to its performance using
only the local tuning algorithm, versus its performance us-
ing both algorithms. The latter configuration is the same
as shown in Figure 14. This experiment was run on both
topologies with similar results, but to conserve space only
the results for ts16384-8 are shown. We note from the
center graph that while local tuning quickly moves the
routing tables in the system towards optimality, it cannot
find many close neighbors. This symptoms of this defi-
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ciency are illustrated in right-hand graph, where the 95th
percentile latency is shown suffering. These effects are an
illustration of the problem highlighted by Figure 9; there
is simply no path from the existing neighbors a node has
and the neighbors it needs to optimize its routing table.
On the other hand, since global tuning can find any node
in the network, but does so only one node at a time, we see
that it improves routing tables more slowly; although it is
not shown in the graph, so long as the leaf sets are con-
sistent, global tuning will always improve a routing table
to optimality, but it make take a long time to do so. The
combination of the algorithms creates good routing tables
quickly, and will eventually converge them to optimality.

6 Related work

As we noted at the start of this paper, while DHTs have
been the subject of much research in the last 4 years or
so, there have been few studies of the resilience of real
implementations at scale, perhaps because of the difficulty
of deploying, instrumenting, and creating workloads for
such deployments. However, there has been a substantial
amount of theoretical and simulation-based work.

Gummadi et al. [10] present a comprehensive analysis
of the static resilience of the various DHT geometries. As
we have argued earlier in this work, static resilience is an
important first step in a DHT’s ability to handle failures in
general, and churn in particular.

Liben-Nowell et al. [14] present a theoretical analysis
of structured peer-to-peer overlays from the point of view
of churn as a continuous process. They prove a lower
bound on the maintenance traffic needed to keep such
networks consistent under churn, and show that Chord’s
algorithms are within a logarithmic factor of this bound.
This paper, in contrast, has focused more on the systems
issues that arise in handling churn in a DHT. For example,
we have observed what they call “false suspicions of fail-
ure”, the appearance that a functioning node has failed,
and shown how proactive failure recovery can exacerbate
such conditions.

Mahajan et al. [15] present a simulation-based analysis
of Pastry. They do not consider the possibility that a Pas-
try network could become inconsistent (as [14] does for
Chord), but instead look at the probability of message loss
for various rates of maintenance traffic. Furthermore, they
show an algorithm for automatically tuning that rate for a
given maximum loss rate; while we have not investigated
it, we believe this result could be usefully applied to Bam-
boo. Unlike our work, they do not consider hop-by-hop
retransmissions during lookup. While end-to-end retrans-
missions are clearly necessary for correctness, choosing a
good timeout for an arbitrary lookup is hard. Moreover,
we have shown that intermediate nodes in a route are aptly

suited for computing retransmission times, and that per-
formance suffers significantly if these times are perturbed.
Finally, the simulations of [15] do not consider such net-
work issues as queuing, packet loss, etc.; while this allows
them to simulate far larger networks than we have stud-
ied here, it does not reveal, for example, the drawbacks
of proactive recovery shown by our emulations of smaller
networks. We are interested in whether a useful middle
ground exists between these approaches.

Finally, a number of useful features for handling churn
have been proposed, but are not implemented by the three
DHTs studied here. For example, Kademlia [16] main-
tains several neighbors for each routing table entry, or-
dered by the length of time they have been neighbors.
Newer nodes replace existing neighbors only after failure
of the latter. This design decision is aimed at mitigating
the effects of the high “infant mortality” observed in peer-
to-peer networks.

Another approach to handling churn is to introduce a
hierarchy into the system, through stable “superpeers” [1,
26]. While an explicit hierarchy is a viable strategy for
handling load in some cases, this work has shown that
a fully decentralized, non-hierarchical DHT can in fact
handle high rates of churn at the routing layer.

7 Conclusion

In this work, we have summarized the rates of churn ob-
served in deployed peer-to-peer systems and shown that
existing DHTs exhibit less than desirable performance at
the higher end of these churn rates. We have presented
Bamboo, a DHT designed to handle churn, and shown that
it is robust under median session times as short as 1.5 min-
utes, the fastest rate our testing framework can sustain.

Bamboo’s resilience to churn is the combined result of
several factors. First, the static resilience of its hybrid ge-
ometry allows the network to continue functioning after
a failure until recovery can occur. This static resilience
is a necessary first step to handling failures in general
and churn in particular. Second, recovery is performed in
a periodic—rather than proactive—manner: the recovery
process itself does not further load the network, avoiding
a possible positive feedback loop in which congestion is
interpreted as further node failure. Third, Bamboo’s use
of recursive routing allows for active probing of neighbor
links, which in turn allows for the calculation of effec-
tive response timeouts for requests send over those links.
Without such accurate timeout information, a probable
node failure is difficult to distinguish from network or pro-
cessor congestion, and the ability of the DHT to adapt is
inhibited. Moreover, in networks with heavy background
traffic, we expect this resilience to congestion to be im-
portant in handling even lighter levels of churn than those
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emphasized here. We plan to study such scenarios in our
future work.

While we have presented these latter two principles in
the context of Bamboo, we believe they have more general
applicability to all DHTs with high static resilience. Pe-
riodic recovery is a general technique already employed
by Chord; Bamboo is simply the first DHT to present an
effective set of periodic recovery algorithms that maintain
proximity in neighbor selection. Also, the derivation of
accurate timeout values need not be based on active prob-
ing; it is possible that the coordinate-based timeout calcu-
lation schemes can be made to respond quickly enough to
changing network conditions to be an effective substitute.
If so, we expect DHTs that use iterative routing to handle
churn as well as their recursive counterparts. Since itera-
tive routing is attractive for a variety of other reasons, we
view these coordinate algorithms as an important area of
future research.

Finally, in this work we have only shown the resistance
of the Bamboo routing layer to churn, an important first
step verifying that DHTs are ready to become the dom-
inant building block for peer-to-peer systems, but only a
first step. Clearly other issues remain. Security and pos-
sibly anonymity are two such issues, but we are unclear
about how they relate to churn. We are currently studying
the resilience to churn of the algorithms used by the DHT
storage layer. Nonetheless, we hope that the existence of
a routing layer that is robust under churn will provide a
useful substrate on which these remaining issues may be
studied.
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