
Spurring Adoption of DHTs with OpenHash, a Public DHT Service

Brad Karp†,∗ Sylvia Ratnasamy‡ Sean Rhea‡,∗∗ Scott Shenker♦,∗∗

†Intel Research Pittsburgh ∗Carnegie Mellon Univ. ‡Intel Research Berkeley ∗∗UC Berkeley ♦ICSI

1 Introduction

The past three years have seen intense research into Dis-
tributed Hash Tables (DHTs): both into algorithms for build-
ing them, and into applications built atop them. These appli-
cations have spanned a strikingly wide range, including file
systems [4, 6, 10], event notification [11], content distribu-
tion [2], e-mail delivery [12], indirection services [17, 16],
web caches [7], and relational query processors [9]. While
this set of applications is impressively diverse, the vast ma-
jority of application building is done by a small community
of DHT researchers. If DHTs are to have a positive impact
on the design of distributed applications used by real users
outside this research community, we believe that the commu-
nity of DHT-based application developers should be as broad
as possible.

Why, then, has this community of developers remained
narrow? First, keeping a research prototype of a DHT run-
ning continually requires effort, and experience with DHT
code. Second, significant testbed resources are required
to deploy and test DHT-based applications. A hacker can
download the code for Chord, but she cannot run that code
alone; recall that only a tiny fraction of would-be develop-
ers has access to a testbed infrastructure like PlanetLab [13].
Consequently, most application developers would turn to ad
hoc application-specific solutions rather than attempt to use
a DHT.

Our central tenet is that we, as a community, need to har-
ness the ingenuity and talents of the vast majority of appli-
cation developers who reside outside the rarified but perhaps
sterile air of the DHT research community. To that end, we
issue a call-to-arms to deploy an open, publicly accessible
DHT service that would allow new developers to experiment
with DHT-based applications without the burden of deploy-
ing and maintaining a DHT. We believe that there are many
simple applications that, individually, might not warrant the
effort required to deploy a DHT but that would be trivial to
build over a DHT service were one available. Many-to-many
instant messaging and photo publication, where a user may
share photos under a long-lived name even if the photos are
served from a home machine with a dynamic IP address are
but two of the many such applications. We term these lite ap-
plications, because they make only simple and often fleeting

use of a DHT.1

To spur the development of these lite applications we pro-
pose OpenHash, an open, publicly accessible DHT service
that runs on a set of infrastructure hosts and allows any ap-
plication to execute put() and get() operations. Its pres-
ence would hopefully enable and encourage the development
of a wide range of interesting and unexpected DHT applica-
tions.2

However, we already know from our limited experience
with DHT-based applications that some require application-
specific processing and thus can’t be limited to using the
generic put()/get() interface. The technical contribu-
tion of this paper is an examination of what one can do
to extend the functionality of a DHT service so that such
application-specific requirements can be reasonably accom-
modated. That is, we seek to share a common DHT rout-
ing platform while allowing application-specific functional-
ity to reside only on certain nodes. To meet this hybrid chal-
lenge of shared routing but application-specific processing
we propose ReDiR, a distributed rendezvous scheme that re-
moves the need in today’s DHT systems to place application-
specific code together with DHT code. The ReDiR algorithm
itself requires only a put()/get() interface from a DHT,
but allows a surprisingly wide range of applications to work
over a DHT service.

2 DHT as Library vs. as Service

Implementing a DHT as a service that exports a narrow
put()/get() interface is a departure from how present-
day DHT-based applications are built. To illuminate the con-
sequences of this design decision, we consider in turn the
properties of the current approach and the service approach.

Many existing DHT applications (e.g. [2, 9, 10]) are built
using a “bundled” model, where the application is able to
read the local DHT state and receive upcalls from the DHT
(as in [5]), either by being linked into the same process as

1Our claim is not that a DHT service is the only or best way to build these
applications, but rather that a DHT service is a common building block that
would be useful for a wide range of such applications, and would be far
preferable to building one-off, special-purpose rendezvous or indirection
mechanisms for each application (e.g., dynamic DNS for photo publication).

2We are often reminded that the most successful peer-to-peer application
was developed by a 19-year-old.



the DHT code or through local RPC calls. For brevity, we
will say these applications use the DHT as a library in ei-
ther case. To support upcalls, the library model requires that
code for the same set of applications be available at all DHT
hosts. In practice, this limitation prevents sharing of a sin-
gle DHT deployment by multiple applications—or even by
different revisions of the same application—that require dis-
tinct upcall-invoked code on all DHT hosts. Instead, differ-
ent applications only re-use the DHT code, amortizing the
development of the DHT functionality over the set of appli-
cations that use it. A side effect of this is that every such
application imposes the maintenance traffic associated with
running a DHT on its underlying infrastructure.

The great strength of the library model is the flexibility
it affords applications in functionality. By bundling arbi-
trary application code with DHT code, the model supports
any operation at any overlay host on any data held at that
host. However, this flexibility comes at the expense of syn-
ergy in deployment, and thus at the expense of ease of use
of the DHT. We believe that these weaknesses in the li-
brary model are the primary reasons for the narrowness of
the community of developers of DHT-based applications to-
day. Most would-be DHT-using developers look elsewhere
for rendezvous and indirection solutions, because the effort
and resources required to deploy a DHT are often greater
than those required to hack up a more ad hoc solution.

In contrast, a DHT that provides a more limited interface,
specifically only put() and get(), does not need to be
bundled with application code and can thus be deployed as a
common, openly accessible service. There are two principal
weaknesses of this service model. First, a publicly accessible
service is subject to attack.3 We include a brief discussion in
Section 4 but defer a full exploration of the problem to later
work. The second problem, which is the focus of this paper,
is that the service model is far less flexible in the function-
ality (and thus the applications) it supports. Intuitively the
put()/get() interface appears far more restrictive than
the “any code, any node” approach of the library model. We
offer a detailed discussion of what the service model can and
cannot support in the following section. The library model
and service model are extremes on a continuum between
maximal flexibility without an easily adopted infrastructure,
and providing such an infrastructure with reduced flexibil-
ity. In the next section, we explore the space between these
extremes and the extent to which application-specific func-
tionality can live atop a DHT service.

3 Application-Specific Functionality
in OpenHash

Existing, library-based DHT applications [10, 9, 16, 6] co-
locate application-specific functionality with the DHT. We

3Note, however, that almost any deployed DHT-based system is subject
to attack, whether it uses a DHT library or service.

distinguish between application functionality invoked at the
endpoint (i.e., destination) of a DHT route versus function-
ality invoked at every hop along a route and show that, sur-
prisingly, the former is quite easily achievable over a service
while the latter is not.

3.1 Endpoint vs. Per-Hop Operators

We use illustrative examples drawn from existing applica-
tions, namely PIER and i3, to expose the difference between
endpoint and per-hop functionality.

The first system we consider is i3. In i3, packets are for-
warded to identifiers called triggers. To send a packet to x,
a sender routes the packet to the DHT host responsible for
storing trigger entries for x. That DHT host then extracts
the value I corresponding to x and forwards the packet to I.
There are two aspects to i3’s support for packet forwarding
within a DHT. First, each DHT host in i3 must implement the
forwarding operation. Second, that forwarding code must
read the (key, value) pair stored locally at that DHT host.

Likewise, to execute a join operation in PIER [9], a DHT
host iterates over all the (key, value) pairs in its local store,
and rehashes them by a portion of their value fields. Here the
code for a join operator resides at every DHT host and has
full access to the host’s local store. The essence of the above
behaviors is that the DHT routes an operation request to a
key within the keyspace, and the end DHT host responsible
for that key carries out an operation that typically accesses
the key-value entries stored locally. We term the combina-
tion of these behaviors an endpoint operator.

A somewhat different example is PIER’s computation of
aggregates along a tree rooted at a particular key. Nodes
route messages toward the root and each DHT host along the
path aggregates data before forwarding them. Multicast for-
warding within a DHT (as in Scribe, Bayeux, or M-CAN)
also uses per-hop processing to set up and maintain dissemi-
nation trees. We term such behavior a per-hop operator, as it
requires application-specific operations be executed at each
hop along the path to a key (as opposed to at the final node
that holds the key).

3.2 Endpoint Operators in OpenHash

Note that OpenHash cannot by itself support either endpoint
or per-hop operators; code for these application-specific op-
erators does not reside at the nodes that constitute Open-
Hash’s DHT, as OpenHash is a shared service. However, we
can allow application-specific code to live outside of Open-
Hash and use OpenHash to direct requests to hosts that do
support the required operators. This approach allows devel-
opers to deploy application-specific code at will while still
sharing OpenHash’s common key-based routing infrastruc-
ture. We term hosts that run the OpenHash DHT OpenHash
hosts and hosts outside OpenHash that run only application-
specific endpoint operators application hosts. As with any
DHT, application hosts must still divide ownership of their



shared keyspace among themselves. In this paper, in the
interest of requiring minimal application-specific support
within OpenHash, we adopt an extreme point in the design
space for endpoint operator support, in which application
hosts are an entirely disjoint set of hosts from OpenHash
hosts. However, the technique we present for supporting
endpoint operators works equally well when these sets over-
lap, or even at the other extreme, where only OpenHash hosts
implement endpoint operators, and each such host may sup-
port different sets of endpoint operators. These two extremes
are both important: an application’s popularity may warrant
its endpoint operators’ inclusion in the code at OpenHash
hosts, whereas novel endpoint operators for fledgling appli-
cations may still be deployed on application hosts without
modifying the code installed at OpenHash hosts.

To support endpoint operators, we introduce the notion
of namespaces. Each application corresponds to a single,
uniquely named namespace, and requires a particular set of
endpoint operators be available for all keys in its keyspace.
OpenHash must route requests destined for key k in applica-
tion A’s namespace (denoted (A : k)) to the application host
that both runs application A and is responsible for key k in
namespace A. Conventional DHTs consistently hash a set
of keys over the hosts that run the DHT itself. We need to
solve a different problem: to consistently hash a set of keys
over a set of application hosts that may not run the DHT it-
self. This functionality is effectively the same as that of the
lookup() interface first proposed in the Chord paper and
adopted by the authors in [5] as the KBR or Key-Based Rout-
ing interface, with one important difference: our lookup()
maps application keys to arbitrary application hosts, rather
than only to the hosts that run the DHT.

In this section, we describe ReDiR (Recursive Distributed
Rendezvous), a mechanism by which OpenHash can be used
to achieve such application-specific lookup()s.4 ReDiR
requires hosts that support an endpoint operator for appli-
cation A to register with OpenHash as application hosts in
namespace A. Clients that wish to route to (namespace : key)
destinations can then use OpenHash to route to the applica-
tion host responsible for that key.

ReDiR: There are two interfaces to ReDiR: one for reg-
istration of application hosts as members of a names-
pace, and one for client lookup()s of the form
lookup(namespace : key), which return the IP ad-
dress of the application host registered in namespace that
is responsible for key. We describe each in turn, after first
describing primitives used by both interfaces.

ReDiR hierarchically decomposes the OpenHash
keyspace into nested binary partitions, as shown in Fig-
ure 1(a). Level 0 in the decomposition corresponds to
the entire keyspace [0,K − 1], and generally, level i of the

4Note that ReDiR solves a very different problem than bootstrapping
multiple application-specific DHTs from a single DHT [3]; we propose a
single DHT shared by multiple applications.

keyspace is decomposed into 2 i partitions, each of length
K/(2i), to a depth of l levels, i ∈ [0, l − 1].5 Thus, every
point in the keyspace has a corresponding set of enclosing
partitions, one at every level in the decomposition tree.
We assume that all hosts have available the same hash
function H() → [0,K − 1] to map arbitrary data to keys.
We define mapping a key k ∈ [0,K − 1] to k ′ within a
narrower subrange of the keyspace [P,Q] by scaling linearly:
k′ = P + �k(Q−P)/K�. For a key k ∈ [0,K − 1], when we
write “get(k) or put(k) over a subrange of the keyspace
[P,Q],” we invoke this mapping implicitly.

Each application that requires endpoint operators has its
own namespace, identified by a unique string. Consider an
application host X that runs endpoint operator code for appli-
cation ABC. Essentially, host X registers in namespace ABC
by walking up the ReDiR hierarchy, put()ting its own IP
address as it goes, until it finds a predecessor. In detail:

• Host X computes H(X). There is exactly one binary
partition (keyspace subrange) at each level i that en-
closes H(X).

• At each level i, starting at the deepest level (2 in the ex-
ample in Figure 1(a)) and progressing up the tree toward
its root (the partition including the entire keyspace),
host X first executes put(H(ABC),X) over the sub-
range of the keyspace in which H(X) falls at that level.
Figure 1(a) shows an example of where H(ABC) falls
at each level, given a particular H(X). Host X thus ap-
pends its IP address to the list of IP addresses (if any)
previously put() by other hosts within that partition
that previously joined namespace ABC. Next, host X
executes get(H(ABC)) over the same subrange of the
keyspace. Host X then searches the one or more re-
turned IP addresses I j for a predecessor—for an I j such
that H(I j) < H(X).6 If for any j this condition is sat-
isfied, and a predecessor has been found, host X has
completed the registration process. If no predecessor
was found, host X continues walking up the tree, and
repeats this entire process at the level of the tree next
closest to the root. If host X finds no predecessor at
levels 1 or greater, the process terminates when it visits
level 0 of the tree and stores its IP address there.

Because application hosts periodically refresh their
ReDiR entries, as all put()s are timer-expired soft state
(see Section 4.1), ReDiR converges to storing at most 2 IP
addresses per namespace entry at levels 0 . . . l−2 of the hier-
archy. At level l −1 of the hierarchy, ReDiR stores as many
IPs per namespace entry as there are application hosts whose
IP addresses fall within that portion of the keyspace; one
must choose l commensurately.

A client performs lookup(ABC : k) as follows:

5In the interest of simplicity, we consider only base-2 decompositions
and fixed depth l, though these need not be the same across applications,
and could in fact be encoded into the rendezvous name.

6There is no modular wrapping here; the comparison is absolute.



(a) ReDiR. (b) Namespaces. (c) Multicast.

Figure 1: 1(a) ReDiR hierarchy and rendezvous points for a node X belonging to application ABC. Dashed lines denote enclosing
partitions for X at each level. For clarity, the keyspace at each level is redrawn; in practice there is only one keyspace. 1(b) Using
ReDiR to find the correct successor node for application ABC’s key k: Node X joined first, then Y and Z. Each rendezvous point lists the
nodes registered there. Node Z is key k’s correct successor. Dashed lines denote rendezvous nodes contacted to locate k’s successor. 1(c)
Example of multicast forwarding: transmission links are labeled with their depth in forwarding hierarchy.

• Note that k falls in one binary partition (keyspace sub-
range) at each level i of the hierarchy.

• As before, beginning at the deepest level of the
tree, and proceeding upward, the client performs a
get(H(ABC)) over the keyspace subrange at that level
which encloses k. Among the IP addresses I j returned,
if any, the client searches for the successor to k; that is,
for the I j such that H(I j) is the smallest value satisfying
H(I j) > k, where modular wraparound at the high end
of the global [0,K−1] keyspace is used in the compar-
ison, in the usual fashion when computing DHT keys’
successors. When a successor I j is found at one level
of the tree, that I j is the result of the lookup(). If
no such successor is found, the search continues up the
tree, at the next wider partition enclosing k.

Figure 1(b) shows an example of a client performing
lookup(ABC : k) after the registration process has com-
pleted for hosts X , Y , and Z. In the worst case, ReDiR
requires a client perform l get() operations to com-
plete a lookup(namespace : key); in practice, we
expect client-side caching and other optimizations to re-
duce this cost significantly. We point out that the entire
ReDiR mechanism builds exclusively over the simple DHT
put()/get() interface. To OpenHash, the ReDiR-related
(key, value) pairs appear as any others.

Even with ReDiR, OpenHash leaves developers with the
burden of deploying application-specific operators. We
imagine that over time OpenHash will grow to incorporate

some of these more specialized operators, but we don’t yet
know what this subset should be. Moreover, expecting every
node in the OpenHash infrastructure always to run exactly
the same set of operators is unrealistically utopian. ReDiR
enables a single routing layer to be shared by all services
whether partially deployed or not. Without ReDiR, we are
stuck with either utopia or bust.

3.3 Per-hop Operators in OpenHash

Although a DHT service with ReDiR performs the route-to-
key function for an application, there is no obvious way to
support per-hop operators in OpenHash. However, in consid-
ering the various forms of per-hop operators described in the
literature, we discovered that in most cases one could achieve
similar functionality outside of the DHT service, essentially
by converting per-hop operations into “scoped” endpoint op-
erations (which ReDiR supports). While we do not claim
to know whether all per-hop operators can be implemented
using a service, we find this approach promising, and will
explore it in greater detail in future work. In this section, we
very briefly describe how three sample operations that typ-
ically use per-hop operations—multicast, aggregation and
server selection (DOLR)—can be built over a DHT service.

Multicast: The following is a brief sketch of one possi-
ble solution to multicast in which OpenHash (using ReDiR)
provides the rendezvous mechanism, while end nodes im-
plement forwarding. To join group G, a node A inserts (G,A)



within successively largely partitions enclosing H(A) until it
hits a partition in which there is already an entry for G. Let
d be the maximum depth of the ReDiR hierarchy. Then, to
multicast to all of group G, node A does a get(G) within
its level d partition and unicasts the message to all the group
members returned by the get(). A also does a get(G)
within each of its “sibling” partitions from level d − 1 to 0
and unicasts a message to any one node at each level. A
node, say B, that receives a message from A assumes that
it is responsible for forwarding it on within its half of the
smallest partition in the decomposition that contains both A
and B; if that decomposition is at level d, B does nothing.
Figure 1(c) shows an example of this forwarding. Note how-
ever, that unlike schemes like Scribe [2], the above solution
need not result in trees optimized for low latency.

Aggregation: Aggregation along the path to a root R could
be implemented similarly to multicast by having rendezvous
nodes for R at level i aggregate messages before forwarding
them on to level i−1.

Server selection using DOLR: In systems such as
OceanStore and PAST, a client’s lookup returns the address
of the node closest to the client that stores a copy of the re-
quested object. These systems achieve this through a com-
bination of proximity-sensitive DHT construction and by
caching pointers along the path between a node storing a
copy and the root node for that object’s identifier. This mech-
anism (often called DOLR) serves two purposes: (1) server
selection based on network latency and (2) fate sharing in
the sense that if a closeby (e.g., within the client’s organi-
zation) server is available, the lookup will succeed even if a
large fraction of the DHT is unavailable to the client. Both
of the above can be achieved without explicitly embedding
the supporting functionality into the DHT. For example, [17]
and [12] use an org-store and local rings to achieve fate shar-
ing, and [4, 16] use network coordinates to find close copies.
In fact, such approaches frequently give applications more
control over selection criteria (e.g., server bandwidth or load
could be used in place of or in addition to latency). Such
flexibility is much harder to achieve using DOLR.

4 Architecture Details

In this section we discuss architectural issues in the design
of OpenHash. We begin with the service model, then discuss
issues of resource contention.

4.1 Basic Service Model

Figure 2 presents an overview of the OpenHash architecture.
Each PlanetLab host runs the OpenHash code and maintains
a local store of the (key, value) pairs for which it is respon-
sible. These local stores are accessible to OpenHash clients
only through the put()/get()interface. Lite applications

PlanetLab

Host a

O
p
e
n
H

a
s
h

A
p

p
 A

A
p

p
 B

Host d

A
p

p
 C

A
p

p
 A

Host e

O
p
e
n
H

a
s
h

Host b

O
p
e
n
H

a
s
h

A
p

p
 C

A
p

p
 B

Host c

A
p

p
 A

A
p

p
 B

Host g

Chat Client

Host f

Chat Client

Host h

App B 

Client

A
p

p
 A

O
p
e
n
H

a
s
h

OpenHash

code

OpenHash

store

Endpoint

operator code

Endpoint

operator store

Lite apps

App B get()s addr

of host c from

OpenHash

using ReDiR

OpenHash

get()

Figure 2: Overview of the OpenHash architecture. Lite applica-
tions, such as instant messaging, use OpenHash only through its
put()/get()interface, while more advanced applications de-
ploy endpoint code and may be co-located with OpenHash servers.

use only the put()/get()interface, and are generally not
co-located with OpenHash code and data. In the figure, two
instant-messaging clients use OpenHash to discover each
other, then communicate over IP. The endpoint operators of
more advanced applications may run either by themselves on
application hosts, or be co-located with OpenHash on Open-
Hash hosts. In the figure, endpoint operators for application
B run on some of the PlanetLab hosts and on other hosts out-
side PlanetLab. Endpoint operator instances for B use ReDiR
to coordinate amongst themselves. They may also maintain
local data stores not managed by OpenHash.

An OpenHash put() consists of a client address, key,
value, and time to live (TTL). Stored data are soft state; if
a value is not refreshed before its TTL expires, OpenHash
discards it. Consequently, stored entries do not consume
resources indefinitely. put()s are uniquely identified by
client and key; a subsequent put() with the same client
and key simply refreshes the TTL, and put()s from sepa-
rate clients do not overwrite each other. Additionally, a client
may include a secret with a put(); a value thus stored may
later be changed by resupplying the secret. We imagine us-
ing simple replication (e.g., at k successor nodes) for avail-
ability and borrowing from the numerous proposals in the lit-
erature for caching and load balancing schemes [10, 14, 16].
An open question is the degree to which OpenHash should
expose control over caching and load balancing to its users.

4.2 Resource Contention

A fundamental challenge in providing an open service is that
of resource contention; under load, the service should pro-
vide each client with a “fair” share of the service’s resources.
In this section, we briefly put forth three different resource-
management techniques as a starting point for discussion.



The first approach is a best-effort service in which OpenHash
makes no attempt to arbitrate between the needs of conflict-
ing applications; excess requests are simply discarded and
end hosts react to perceived losses by scaling back their rate
of resource consumption, perhaps aided by stardardized end-
host code as in TCP. This model is easy to implement but vul-
nerable to faulty or malicious clients that fail to scale back.
A more sophisticated approach is to discourage selfish con-
sumption by using fair queueing at every OpenHash node.
One challenge with fair queueing is the need for secure iden-
tification of clients, though we believe such identification is
achievable using SYN-cookie-like techniques [1]. A final
approach to resource management is to charge for each use
of a resource as has been previously proposed [8, 15], but us-
ing computational puzzles instead of micropayments as cur-
rency. Unlike with fair queuing, there is no need to securely
identify clients in a charge-per-use model.

5 Future Work

Recasting OpenHash as an active service, in which DHT
nodes download application-specific code, warrants future
investigation. For an initial deployment, we believe the sim-
ple DHT model is appropriate because it avoids the com-
plexity of downloadable code, yet still supports application-
specific operators (with ReDiR), and is, in any case, a pre-
requisite for an active service.

We view our deployment plans (on PlanetLab, adminis-
tered by the authors) as largely a bootstrap phase beyond
which we imagine OpenHash will evolve to run on infras-
tructure hosts administered by different authorities. Ensur-
ing robustness when service hosts are not mutually trusting
is non-trivial, and the subject of future research.

Acknowledgements

We thank David Tennenhouse, Timothy Roscoe, Hans Mul-
der, Robert Morris, Frans Kaashoek, Kevin Fall, David
Culler, David Mazières, Yatin Chawathe, Michael Wal-
fish, Joe Hellerstein, Petros Maniatis, and John Kubiatowicz
for insightful discussions and comments that improved this
work.

References
[1] BERNSTEIN, D. Syn cookies. http://cr.yp.to/syncookies.html.

[2] CASTRO, M., DRUSCHEL, P., KERMARREC, A.-M.,
NANDI, A., ROWSTRON, A., AND SINGH, A. SplitStream:
High-bandwidth content distribution in a cooperative environ-
ment. In Proceedings of the IPTPS 2003 (2003).

[3] CASTRO, M., DRUSCHEL, P., KERMARREC, A.-M., AND

ROWSTRON, A. One Ring to Rule Them All: Service Dis-
covery and Binding in Structured Peer-to-peer Overlay Net-
works. In Proceedings of the 2002 SIGOPS European Work-
shop (Sept. 2002).

[4] DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS, R.,
AND STOICA, I. Wide-area Cooperative Storage with CFS. In
Proceedings of the 18th ACM Symposium on Operating Sys-
tems Principles (SOSP 2001) (Lake Louise, AB, Canada, Oc-
tober 2001).

[5] DABEK, F., ZHAO, B., DRUSCHEL, P., KUBIATOWICZ, J.,
AND STOICA, I. Towards a Common API for Structured Peer-
to-peer Overlays. In Proceedings of the IPTPS 2003 (Berke-
ley, February 2003).

[6] DRUSCHEL, P., AND ROWSTRON, A. Storage Management
and Caching in PAST, a Large-scale, Persistent Peer-to-peer
Storage Utility. In Proceedings of the 18th ACM Symposium
on Operating Systems Principles (SOSP 2001) (Lake Louise,
AB, Canada, October 2001).

[7] FREEDMAN, M. J., FREUDENTHAL, E., AND MAZI ÈRES,
D. Democratizing Content Publication with Coral. In Pro-
ceedings of the 1st Symposium on Networked Systems Design
and Implementation (NSDI 2004) (San Francisco, Mar. 2004).

[8] HAND, S., AND ROSCOE, T. Mnemosyne: Peer-to-Peer
Steganographic Storage. In Proceedings of the IPTPS 2002
(Boston, March 2002).

[9] HUEBSCH, R., HELLERSTEIN, J. M., LANHAM, N., LOO,
B. T., SHENKER, S., AND STOICA, I. Querying the Internet
with PIER. In Proceedings of VLDB 2003 (Berlin, Germany,
September 2003).

[10] KUBIATOWICZ, J. Oceanstore: An Architecture for Global-
Scalable Persistent Storage. In Proceedings of the ASPLOS
2000 (Cambridge, MA, USA, November 2000).

[11] LUIS FELIPE CABRERA, M. B. J., AND THEIMER, M. Her-
ald: Achieving a Global Event Notification Service. In Pro-
ceedings of the HotOS VIII (May 2001).

[12] MISLOVE, A., POST, A., REIS, C., WILLMANN, P., DR-
USCHEL, P., WALLACH, D., BONNAIRE, X., SENS, P.,
BUSCA, J.-M., AND ARANTES-BEZERRA, L. POST: A Se-
cure, Resilient, Cooperative Messaging System. In Proceed-
ings of the HotOS IX (May 2003).

[13] PETERSON, L., ANDERSON, T., CULLER, D., AND

ROSCOE, T. A Blueprint for Introducing Disruptive Technol-
ogy into the Internet. In Proceedings of the HotNets-I 2002
(Princeton, October 2002).

[14] RAO, A., LAKSHMINARAYANAN, K., SURANA, S., KARP,
R., AND STOICA, I. Load Balancing in Structured P2P Sys-
tems. In Proceedings of the IPTPS 2003 (Berkeley, February
2003).

[15] ROSCOE, T., AND HAND, S. Palimpsest: Soft-capacity Stor-
age for Planetary-Scale Services. In Proceedings of the Ho-
tOS IX (May 2003).

[16] STOICA, I., ADKINS, D., ZHUANG, S., SHENKER, S., AND

SURANA, S. Internet Indirection Infrastructure. In Proceed-
ings of the ACM SIGCOMM 2002 (Pittsburgh, PA, USA, Au-
gust 2002).

[17] WALFISH, M., BALAKRISHNAN, H., AND SHENKER, S.
Untangling the Web from DNS. In Proceedings of the 1st
Symposium on Networked Systems Design and Implementa-
tion (NSDI 2004) (San Francisco, Mar. 2004).


