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1 Introduction
The most basic functionality of a distributed hash table, or
DHT, is to partition a key space across the set of nodes in
a distributed system such that all nodes agree on the par-
titioning. For example, the Chord DHT assigns each node
a random identifier from the key space of integers modulo
2160 and maps each key to the node whose identifier most
immediately follows it. Chord is thus said to implement
the successorrelation, and so long as each node in the
network knows its predecessor in the key space, any node
can compute which keys are mapped onto it.

An implicit assumption in Chord and other DHT pro-
tocols is that all nodes are able to communicate with each
other, yet we know this assumption is unfounded in prac-
tice. We say a set of three hosts,A, B, andC, exhibit
non-transitivityif A can communicate withB, andB can
communicate withC, but A cannot communicate withC.
As we show in Section 2, 2.3% of all pairs of nodes on
PlanetLab exhibit transient periods in which they cannot
communicate with each other, but in which they can com-
municate through a third node. These transient periods
of non-transitivity occur for many reasons, including link
failures, BGP routing updates, and ISP peering disputes
(e.g., [15]).

Such non-transitivity in the underlying network is prob-
lematic for DHTs. Consider for example the Chord net-
work illustrated in Figure 1. Identifiers increase from the
left, so nodeB is the proper successor to keyk. If nodesA
andB are unable to communicate with each other,A will
believe thatC is its successor. Upon receiving a lookup
request fork, A will return C to the requester. If the re-
quester then tries to insert a document associated withk
at nodeC, nodeC would refuse, since according to its
view it is not responsible for keyk.

While this example may seem contrived, it is in fact
quite common. If each pair of nodes with adjacent iden-
tifiers in a 300-node Chord network (independently) has
a 0.1% chance of being unable to communicate, then we
expect that there is a 1−0.999300≈ 26% chance thatsome
pair will be unable to communicate at any time. However,
both nodes in such a pair have a 0.9992 chance of being
able to communicate with the node that most immediately
precedes them both.
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Figure 1:Non-transitivity in Chord.The dashed lines rep-
resent predecessor links.

Collectively, the authors have produced three indepen-
dent DHT implementations: the Bamboo [20] implemen-
tation in OpenDHT [21], the Chord [25] implementa-
tion in i3 [24], and the Kademlia [13] implementation in
Coral [9]. Moreover, we have run public deployments of
these three DHTs on PlanetLab for over a year.

While DHT algorithms seem quite elegant on paper, in
practice we found that a great deal of our implementation
effort was spent discovering and fixing problems caused
by non-transitivity. Of course, maintaining a full link-
state routing table at each DHT node would have sufficed
to solve all such problems, but would also require con-
siderably more bandwidth than a basic DHT.1 Instead, we
each independently discovered a set of “hacks” to cover
up the false assumption of full connectivity on which
DHTs are based.

In this paper, we categorize the ways in which Bamboo,
Chord, and Kademlia break down under non-transitivity,
and we enumerate the ways we modified them to cope
with these shortcomings. We also discuss application-
level solutions to the problem. Many of these failure
modes and fixes were quite painful for us to discover, and
we hope that—at least in the short term—this work will
save others the effort. In the longer term, we hope that
by focusing attention on the problem, we will encourage
future DHT designers to tackle non-transitivity head-on.

The next section quantifies the prevalence of non-
transitivity on the Internet and surveys related work in this
area. Section 3 presents a brief review of DHT terminol-
ogy. Section 4 discusses four problems caused by non-
transitivity in DHTs and our solutions to them. Finally,
Section 5 concludes.

1For some applications, link-state routing may in fact be the right
solution, but such systems are outside the scope of our consideration.
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Figure 2: Two styles of DHT routing for source nodeS to
perform a lookup that terminates at root nodeR.

2 Prevalence of Non-Transitivity

The Internet is known to suffer from network outages
(such as extremely heavy congestion or routing conver-
gence problems) that result in the loss of connectivity be-
tween some pairs of nodes [3,16]. Furthermore, the loss of
connectivity is often non-transitive; in fact, RON [3] and
SOSR [11] take advantage of such non-transitivity—the
fact that two nodes that cannot temporarily communicate
with one another often have a third node that can commu-
nicate with them both—to improve resilience by routing
around network outages.

Gerding and Stribling [10] observed a significant de-
gree of non-transitivity among PlanetLab hosts; of all pos-
sible unordered three tuples of nodes(A,B,C), about 9%
exhibited non-transitivity.2 Furthermore, they attributed
this non-transitivity to the fact that PlanetLab consists
of three classes of nodes: Internet1-only, Internet2-only,
and multi-homed nodes. Although Internet1-only and
Internet2-only nodes cannot directly communicate, multi-
homed nodes can communicate with them both.

Extending the above study, we have found thattran-
sient routing problems are also a major source of non-
transitivity in PlanetLab. In particular, we considered a
three hour window on August 3, 2005 from the all-pairs
ping dataset [1]. The dataset consists of pings between all
pairs of nodes conducted every 15 minutes, with each data
point averaged over ten ping attempts.

We counted the number of unordered pairs of hosts
(A,B) such thatA andB cannot reach each other but an-
other hostC can reach bothA andB. We found that, of all
pairs of nodes, about 5.2% of them belonged to this cate-
gory over the three hour window. Of these pairs of nodes,
about 56% of the pairs had persistent problems; these
were probably because of the problem described above.
However, the remaining 44% of the pairs exhibited prob-
lems intermittently; in fact, about 25% of the pairs could
not communicate with each other only in one of the 15-
minute snapshots. This suggests that non-transitivity is
not entirely an artifact of the PlanetLab testbed, but also
caused by transient routing problems.

2Li et al. [12] have later studied the effect of such non-transitivity on
the robustness of different DHTs such as Chord and Tapestry.

3 DHT Background

Before moving on to the core of this paper, we first briefly
review basic DHT nomenclature. We assume the reader
has some familiarity with basic DHT routing protocols.
For more information, see [13,23,25].

The DHT assigns every key in the identifier space to
a node, which is called theroot (or thesuccessor) of the
key. The main primitive that DHTs support islookup, in
which a node can efficiently discover a key’s root. The
lookup protocol greedily traverses the nodes of the DHT,
progressing closer to the root of the key at each step.

Each node maintains a set of neighbors that it uses to
route packets. Typically, such neighbors are divided into
(a) short linkschosen from the node’s immediate neigh-
borhood in the ID space to ensure correctness of lookups,
and (b)long linkschosen to ensure that lookups are effi-
cient (e.g., take no more thanO(logn) hops for a network
with n nodes). In Chord and Bamboo, the set of short
links is called the node’ssuccessor listand leaf set, re-
spectively, and the long links are calledfingersandrout-
ing table entries. While Kademlia uses a single routing
table, one can still differentiate between its closestbucket
of short links and farther buckets of long links.

DHT routing can be eitheriterativeor recursive[8] (see
Figure 2). Consider a simple example, in which source
nodeS initiates a lookup for some key whose root is node
R. In iterative routing, nodeS first contacts nodeA to
learn about nodeB, and thenS subsequently contactsB.
In recursive routing,ScontactsA, andAcontactsB in turn.

Both routing techniques have different strengths. For
example, recursive routing is faster than iterative rout-
ing using the same bandwidth budget [8, 19] and can use
faster per-node timeouts [20]. On the other hand, iterative
routing gives the initiating node more end-to-end control,
which can be used, for instance, for better paralleliza-
tion [13, 19]. We discuss the impact of both approaches
in the following section.

4 Problems and Solutions

This section presents problems caused by non-transitivity
in DHTs and the methods we use to mitigate them. We
present these problems in increasing order of how difficult
they are to solve.

4.1 Invisible Nodes

One problem due to non-transitivity occurs when a node
learns about system participants from other nodes, yet
cannot directly communicate with these newly discovered
nodes. This problem arises both during neighbor mainte-
nance and while performing lookups.
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Figure 3:Invisible nodes. Slearns aboutM andN from A
while trying to route toR, butShas no direct connectivity
to M. By sending lookup messages toM andN in parallel,
Savoids being stalled while its request toM times out.

For example, assume that a nodeA learns about a poten-
tial neighborB through a third nodeC, butA andB cannot
directly communicate. We say that fromA’s perspective
B is an invisible node. In early versions of both Bamboo
andi3-Chord,A would blindly addB as a neighbor. Later,
A would notice thatB was unreachable and remove it, but
in the meantimeA would try to route messages throughB.

A related problem occurs when nodes blindly trust fail-
ure notifications from other nodes. Continuing the above
example, whenA fails to contactB due to non-transitivity,
in a naive implementationA will inform C of this fact, and
C will erroneously removeB as a neighbor.

A simple fix for both of these problems is to prevent
nodes from blindly trusting other nodes with respect to
which nodes in the network are up or down. Instead,
a nodeA should only add a neighborB after success-
fully communicating with it, andA should only remove
a neighbor with whom it can no longer directly communi-
cate. This technique is used by all three of our DHTs.

Invisible nodes also cause performance problems dur-
ing iterative routing, where the node performing a lookup
must communicate with nodes that are not its immediate
neighbors in the overlay. For example, as shown in Fig-
ure 3, a nodeS may learn of another nodeM through its
neighborA, but may be unable to directly communicate
with M to perform a lookup.S will eventually time out
its request toM, but such timeouts increase the latency of
lookups substantially.

Three techniques can mitigate the effect of invisible
nodes on lookup performance in iterative routing. First, a
DHT can use virtual coordinates such as those computed
by Vivaldi [7] to choose tighter timeouts. This technique
should work well in general, although we have found that
the Vivaldi implementations in both Bamboo and Coral
are too inaccurate on PlanetLab to be of much use.3

3We note, however, that neither of our Vivaldi implementationsin-
clude the kinds of filtering used by Pietzuch, Ledlie, and Seltzer to pro-
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Figure 4:Routing loops.In i3-Chord, if a lookup passes
by the correct successor on account of non-transitivity, a
routing loop arises. The correctness of lookup can be im-
proved in such cases by traversing predecessor links.

Second, a node can send several messages in parallel
for each lookup, allowing requests to continue towards the
root even when some others time out. As shown in Fig-
ure 3,Scan send lookup messages toM andN in parallel.
This technique was first proposed in Kademlia [13].

Third, a node can remember other nodes that it was un-
able to reach in the past. Using this technique, which
we call a unreachable node cache, a nodeS marks
M as unreachable after a few failed communication at-
tempts. Then, ifM is encountered again during a subse-
quent lookup request,S immediately concludes that it is
unreachable without wasting bandwidth and suffering a
timeout.

OpenDHT andi3 both use recursive routing, but Coral
implements iterative routing using the above approach,
maintaining three parallel RPCs and a unreachable node
cache.

4.2 Routing Loops

In i3-Chord, non-transitivity causes routing loops as fol-
lows. i3-Chord forwards a data packet to the root for a
key k, which is the node whose identifier most immedi-
ately succeedsk in the circular key space. In Figure 4,
let the proper root fork be R. Also, assume thatP can-
not communicate withR. A lookup routed throughP thus
skips overR to N, the next node in the key space with
whichP can communicate.N, however, knows its correct
predecessor in the network, and therefore knows that it is
not the root fork. It thus forwards the lookup around the
ring, and a loop is formed.

It should be noted that this problem does not occur in
the original version of the Chord protocol, since a node

duce more accurate coordinates on PlanetLab [17]; it is possible that
their implementation would produce more accurate timeout values.
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Figure 5: Broken return paths.Although S can route a
put or get request toR through the overlay, there may be
no direct IP route back fromR to S. One alternative is to
route the result back along the path taken fromS to R; the
other is to route through a random neighborT.

does not forward a lookup request to the target node [25];
instead the predecessor of the target node returns the tar-
get node to the requester. However, this operation would
introduce an extra RTT delay in forwarding ani3 packet,
and still will not eliminate the problems created by non-
transitive routing (see the example in Figure 1).

Bamboo and Kademlia avoid routing loops by defin-
ing a total ordering over nodes during routing. In these
networks, a nodeA only forwards a lookup on keyk to
another nodeB if |B−k| < |A−k|, where “−” represents
modular subtraction in Bamboo and XOR in Kademlia.

Introducing such a total ordering ini3-Chord is
straightforward: instead of forwarding a lookup towards
the root, a node can stop any lookup that has already
passed its root. For example, whenN receives a lookup
for k from P, it knows something is amiss sinceP< k< N,
butN is not the direct successor ofk. An alternative mech-
anism for preventing loops would be to store a key on its
predecessor node, rather than its successor node [6].

Stopping a lookup in this way avoids loops, but it is
often possible to get closer to the root for a key by routing
along predecessor links once normal routing has stopped.
i3’s Chord implementation backtracks in this way. For
example, the dashed lines fromN back toR in Figure 4
show the path of the lookup using predecessor links. To
guarantee termination when backtracking, once a packet
begins following predecessor links it is never again routed
along forward links.

4.3 Broken Return Paths

Often an application built atop a DHT routing layer wants
to not only route to the root of a key but also to retrieve
some value back. For example, it may route a put request

to the root, in which case it expects an acknowledgment
of its request in return. Likewise, with a get request, it
expects to receive any values stored under the given key.
In one very important case, it routes a request to join the
DHT to the root and expects to receive the root’s leaf set
or successor list in return.

As shown in Figure 5, when a sourceSroutes a request
recursively to the rootR, the most obvious and least costly
way for R to respond is to communicate withS directly
over IP. While this approach works well in the common
case, it fails with non-transitivity; the existence of a route
from S to R through the overlay does not guarantee the
existence of the direct IP route back. We know of two
solutions to this problem.

The first solution is to source route the message back-
wards along the path it traveled fromS to R in the first
place, as shown by the dotted line in Figure 5. Since
each node along the path forwarded the message through
a neighbor that had been responding to its probes for live-
ness, it is likely that this return path is indeed routable. A
downside of this solution is that the message takes sev-
eral hops to return to the client, wasting the bandwidth of
multiple nodes.4

A less costly solution is to haveR source route its re-
sponse toS through a random member of its leaf set or
successor list, as shown by the dashed line in Figure 5.
These nodes are chosen randomly with respect toR itself
(by the random assignment of node identifiers), so most
of them are likely to be able to route toS. Moreover, we
already know thatR can route to them, or it would not
have them as neighbors.

A problem with both of these solutions is that they
waste bandwidth in the common case whereR can in-
deed send its response directly toS. To avoid this waste,
we haveSacknowledge the direct response fromR. If R
fails to receive an acknowledgment after some timeout,R
source routes the response back (either along the request
path or through a single neighbor). This timeout can be
chosen using virtual coordinates, although we have had
difficulty with Vivaldi on PlanetLab as discussed earlier.
Alternatively, we can simply choose a conservative time-
out value: as it is used only in the uncommon case where
Rcannot route directly toS, it affects the latency of only a
few requests in practice. Bamboo/OpenDHT routes back
through a random leaf-set neighbor in the case of non-
transitivity, using a timeout of five seconds.

We note that iterative routing does not directly suffer
from this problem. SinceSdirects the routing process it-
self, it will assumeR is down and look for an alternate
root R′ (i.e., the node that would be the root ifR were ac-
tually down). Of course, depending on the application,R′

4A similar approach, whereR uses the DHT’s routing algorithm to
route its response toS’s identifier, has a similar cost but a lower likeli-
hood of success in most cases, so we ignore it here.
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Figure 6: Inconsistent roots.A put from S1 is routed to
the root,R, which should replicate it onR′,C,D. But since
R cannot communicate withR′, it replicates it onC–E in-
stead.R′ will later acquire a replica during synchroniza-
tion with C–E.

may not be a suitable replacement forR, but that reduces
to the inconsistent root problem, which we discuss next.

4.4 Inconsistent Roots

The problems we have discussed so far are all routing
problems. In this section, we discuss a problem caused
by non-transitivity that affects the correctness of the par-
titioning of the DHT key space.

Most DHT applications assume that there is only one
root for a given key in the DHT at any given time. As
shown in Figure 6, however, this assumption may be in-
valid in the presence of non-transitivity. In the figure,
nodeR is the proper root of keyk, but sinceRandR′ can-
not communicate,R′ mistakenly believes it is the root for
k. A lookup fromS1 finds the correct root, but a lookup
from S2 travels through nodeI , which also cannot com-
municate withR, and terminates instead atR′.

Prior work has explored the issue of multiple roots due
to transient conditions created by nodes joining and leav-
ing the overlay, but has not explored the effects of misbe-
havior in the underlying network [4].

Given a complete partition of the network, it is difficult
to solve this problem at all, and we are not aware of any
existing solutions to it. On the other hand, if the degree of
non-transitivity is limited, the problem can be eliminated
by the use of a consensus algorithm. The use of such al-
gorithms in DHTs is an active area of research [14,22].

Nonetheless, consensus is expensive in messages and
bandwidth, so many existing DHTs use a probabilistic ap-
proach to solving the problem instead. For example, Free-
Pastry 1.4.1 maintains full link-state routing information
for each leaf set, and a node is considered alive if any other
member of its leaf set can route to it [2]. Once routabil-

ity has been provided in this manner, existing techniques
(e.g., [4]) can be used to provide consistency.

An alternative approach used by both DHash [5] and
OpenDHT [18] is to solve the inconsistent root problem
at the application layer. Consider the traditional put/get
interface to hash tables. As shown in Figure 6, DHash
sends a put request fromS1 for a key-value pair(k,v) to
ther closest successors ofk, each of which stores a replica
of (k,v).5 In the figure,R cannot communicate withR′,
and hence the wrong set of nodes store replicas.

To handle this case, as well as normal failures, the
nodes in each successor list periodically synchronize with
each other to discover values they should be storing
(see [5, 18] for details). As shown in the figure,R′ syn-
chronizes withC–E and learns about the value put byS1.
A subsequent get request fromS2 which is routed toR′

will thus find the value despite the non-transitivity.
Of course, ifR′ fails to synchronize withC–E between

the put fromS1 and the get fromS2, it will mistakenly send
an empty response for the get. To avoid this case, for each
get request on keyk, DHash and OpenDHT query multi-
ple successors ofk. For example, in the figure,R′ would
send the get request toC–E, and all four nodes would re-
spond toS2, which would then compile a combined re-
sponse. This extra step increases correctness at the cost of
increased latency and load; OpenDHT uses heuristics to
decide when this extra step can be eliminated safely [19].

5 Conclusion

In this paper, we enumerated several ways in which naive
DHT implementations break down undernon-transitivity,
and we presented our experiences in dealing with the
problems when building and deploying three indepen-
dent DHT-based systems—OpenDHT [21] that uses Bam-
boo [20], i3 [24] that uses Chord [25], and Coral [9] that
uses Kademlia [13]. While we believe that the ultimate
long-term answer to dealing with issues arising from non-
transitivity is perhaps a fresh DHT design, we hope that,
at least in the short term, this work will save others the
effort of finding and fixing the problems we encountered.
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5DHash actually stores erasure codes rather than replicas, but the
distinction is not relevant to this discussion.
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