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1 Introduction

The most basic functionality of a distributed hash table, or o s
DHT, is to partition a key space across the set of nodes in /WOB\OC\
a distributed system such that all nodes agree on the par-

titioning. For example, the Chord DHT assigns each noggy, re 1:Non-transitivity in Chord.The dashed lines rep-
a random identifier from the key space of integers modyl@sani predecessor links.

2160 and maps each key to the node whose identifier most
immediately follows it. Chord is thus said to implement

the successorelation, and so long as each node in the cgjiectively, the authors have produced three indepen-
network knows its predecessor in the key space, any negé\t DHT implementations: the Bamboo [20] implemen-
can compute which keys are mapped onto it. tation in OpenDHT [21], the Chord [25] implementa-

An implicit assumption in Chord and other DHT progion in i3 [24], and the Kademlia [13] implementation in
tocols is that all nodes are able to communicate with egey;g [9]. Moreover, we have run public deployments of
other, yet we know this assumption is unfounded in pragiese three DHTSs on PlanetLab for over a year.
tice. We say a set of three hosts, B, andC, exhibit  \yhjle DHT algorithms seem quite elegant on paper, in
non-transitivityif A can communicate witB, andB can r4ctice we found that a great deal of our implementation
communicate wittC, but A cannot communicate witB.  ffort was spent discovering and fixing problems caused
As we show in Section 2, 2.3% of all pairs of nodes Q§y, non-transitivity. Of course, maintaining a full link-
PlanetLab exhibit transient periods in which they canngiyte routing table at each DHT node would have sufficed
communicate with each other, but in which they can comy; sojve all such problems, but would also require con-
municate through a third node. These transient periadgerably more bandwidth than a basic DHIFistead, we
of_non-tran3|t|V|ty occur for many reasons, mc_ludmg linkach independently discovered a set of “hacks” to cover
failures, BGP routing updates, and ISP peering diSpuigs the false assumption of full connectivity on which
(e.g., [15])- o _ _ DHTSs are based.

Sugh non-transitivity in the underlying network is prob- |, this paper, we categorize the ways in which Bamboo,
lematic for DHTs. Consider for example the Chord negnorg, and Kademlia break down under non-transitivity,
work illustrated in Figure 1. Identifiers increase from thg,q we enumerate the ways we modified them to cope
left, so nodeB is the proper successor to Keylf nodesA \yith these shortcomings. We also discuss application-
andB are unable to communicate with each otewill |eye| solutions to the problem. Many of these failure
believe thalC is its successor. Upon receiving a lookupygges and fixes were quite painful for us to discover, and
request fork, A will return C to the requester. If the re-,q hope that—at least in the short term—this work will
quester then tries to insert a document associated ithae others the effort. In the longer term, we hope that
at nodeC, nodeC would refuse, since according 1o itsyy focusing attention on the problem, we will encourage
view it is not responsible for ke. _ ~ future DHT designers to tackle non-transitivity head-on.

While this example may seem contrived, it is in fact The next section quantifies the prevalence of non-
quite common. If each pair of nodes with adjacent idegypsitivity on the Internet and surveys related work iis thi
tifiers in a 300-node Chord network (independently) hages  Section 3 presents a brief review of DHT terminol-

a 0.1% chance of being una(l)zg)le to communicate, then y&,  section 4 discusses four problems caused by non-
expect that there is a-10.999%~ 26% chance thatome transitivity in DHTs and our solutions to them. Finally,

pair will be unable to communicate at any time. Howeveteaction 5 concludes.

both nodes in such a pair have #8% chance of being

able to communicate with the node that most immediately 1ror some applications, link-state routing may in fact be tigtri
precedes them both. solution, but such systems are outside the scope of our @rasich.
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~ p A p 3 DHT Background

R R Before moving on to the core of this paper, we first briefly
review basic DHT nomenclature. We assume the reader
has some familiarity with basic DHT routing protocols.
For more information, see [13, 23, 25].
Figure 2: Two styles of DHT routing for source noi€0  The DHT assigns every key in the identifier space to
perform a lookup that terminates at root ndtle a node, which is called theot (or the successdrof the
key. The main primitive that DHTs supportlsokup in
which a node can efficiently discover a key's root. The
2 Prevalence of Non-Tr ansitivity lookup protocol greedily traverses the nodes of the DHT,
progressing closer to the root of the key at each step.
The Internet is known to suffer from network outages Each node maintains a set of neighbors that it uses to
(such as extremely heavy congestion or routing convépute packets. Typically, such neighbors are divided into
gence problems) that result in the loss of connectivity bé&) short linkschosen from the node’s immediate neigh-
tween some pairs of nodes [3,16]. Furthermore, the los¥rhood in the ID space to ensure correctness of lookups,
connectivity is often non-transitive; in fact, RON [3] an@nd (b)long linkschosen to ensure that lookups are effi-
SOSR [11] take advantage of such non-transitivity—tt§éent (€.g., take no more th&logn) hops for a network
fact that two nodes that cannot temporarily communicatéth n nodes). In Chord and Bamboo, the set of short
with one another often have a third node that can comniiitks is called the node’successor lisandleaf sef re-
nicate with them both—to improve resilience by routingpectively, and the long links are callédgersandrout-
around network outages. ing table entries While Kademlia uses a single routing
Gerding and Stribling [10] observed a significant déable, one can still differentiate between its closmatket
gree of non-transitivity among PlanetLab hosts; of all pogf short links and farther buckets of long links.
sible unordered three tuples of nodésB,C), about 9%  DHT routing can be eithaterativeor recursive[8] (see
exhibited non-transitivity. Furthermore, they attributedFigure 2). Consider a simple example, in which source
this non-transitivity to the fact that PlanetLab consist¥deSinitiates a lookup for some key whose root is node
of three classes of nodes: Internetl-only, Internet2;onfy In iterative routing, nodes first contacts nodé\ to
and multi-homed nodes. Although Internetl-only arl@arn about nod®, and thenS subsequently contac&
Internet2-only nodes cannot directly communicate, multi recursive routingScontactsh, andA contactsB in turn.
homed nodes can communicate with them both. Both routing techniques have different strengths. For
Extending the above study, we have found tlan- €xample, recursive routing is faster than iterative rout-
sientrouting problems are also a major source of noiftg using the same bandwidth budget [8, 19] and can use
transitivity in PlanetLab. In particular, we considered f@ster per-node timeouts [20]. On the other hand, iterative
three hour window on August 3, 2005 from the all-paif®uting gives the initiating node more end-to-end control,
ping dataset [1]. The dataset consists of pings betweervdlich can be used, for instance, for better paralleliza-
pairs of nodes conducted every 15 minutes, with each dé@# [13, 19]. We discuss the impact of both approaches
point averaged over ten ping attempts. in the following section.
We counted the number of unordered pairs of hosts
(A,B) such thatA andB cannot reach each other but an- )
other hosC can reach bot# andB. We found that, of all 4 Problems and Solutions
pairs of nodes, aboutB% of them belonged to this cate-
gory over the three hour window. Of these pairs of nodeB)is section presents problems caused by non-transitivity
about 56% of the pairs had persistent problems; théseDHTs and the methods we use to mitigate them. We
were probably because of the problem described abaveesent these problems in increasing order of how difficult
However, the remaining 44% of the pairs exhibited prokley are to solve.
lems intermittently; in fact, about 25% of the pairs could
not communicate with each other only in one of the 15- ..
41 Invisble Nodes

minute snapshots. This suggests that non-transitivity

not entirely an artifact of the PlanetLab testbed, but algg,e problem due to non-transitivity occurs when a node

caused by transient routing problems. learns about system participants from other nodes, yet

cannot directly communicate with these newly discovered

2| j et al. [12] have later studied the effect of such non-titwigy on  N0des. This prOblem arises both during neighbor mainte-
the robustness of different DHTs such as Chord and Tapestry. nance and while performing lookups.

(a) lterative routing (b) Recursive routing
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Loopy Lookup Path
Figure 3:Invisible nodes. $arns abouMm andN fromA | s Following Predecessor Link

while trying to route tdR, butShas no direct connectivity

toM. By sending lookup messageshoandN in parallel, rigyre 4: Routing loops.In i3-Chord, if a lookup passes

Savoids being stalled while its requestNbtimes out.  py the correct successor on account of non-transitivity, a
routing loop arises. The correctness of lookup can be im-

roved in such cases by traversing predecessor links.
For example, assume that a nddiearns about a poten-p y gp

tial neighborB through a third nod€, butA andB cannot
directly communicate. We say that frofs perspective  Second, a node can send several messages in parallel
B is aninvisible node In early versions of both Bamboofor each lookup, allowing requests to continue towards the
andi3-Chord,A would blindly addB as a neighbor. Later, root even when some others time out. As shown in Fig-
Awould notice thaB was unreachable and remove it, bujre 3,Scan send lookup messagesMaandN in parallel.

in the meantimé\ would try to route messages throuBh This technique was first proposed in Kademlia [13].

A related problem occurs when nodes blindly trust fail- Third, a node can remember other nodes that it was un-
ure notifications from other nodes. Continuing the aboggle to reach in the past. Using this technique, which
example, wher\ fails to contacB due to non-transitivity, we call a unreachable node cachea nodeS marks
in a naive implementatioA will inform C of this fact, and M as unreachable after a few failed communication at-
C will erroneously remove as a neighbor. tempts. Then, iM is encountered again during a subse-

A simple fix for both of these problems is to preverjuent lookup requess immediately concludes that it is
nodes from blindly trusting other nodes with respect threachable without wasting bandwidth and suffering a
which nodes in the network are up or down. Insteagineout.

a nodeA should only add a neighbdB after success- QOpenDHT and3 both use recursive routing, but Coral
fully communicating with it, andA should only remove implements iterative routing using the above approach,
a neighbor with whom it can no longer directly communimaintaining three parallel RPCs and a unreachable node
cate. This technique is used by all three of our DHTS. cache.

Invisible nodes also cause performance problems dur-
ing iterative routing, where the node performing a looku

must communicate with nodes that are not its immediajge2 Routlng LOOpS

neighbors in the overlay. For example, as shown in Figr j3-Chord, non-transitivity causes routing loops as fol-
ure 3, a nodes may learn of another nodd through its |ows. i3-Chord forwards a data packet to the root for a
neighborA, but may be unable to directly communicatgey k, which is the node whose identifier most immedi-
with M to perform a lookup.Swill eventually time out ately succeedk in the circular key space. In Figure 4,
its request taM, but such timeouts increase the latency @t the proper root fok be R. Also, assume tha® can-
lookups substantially. N ~_notcommunicate witlR. A lookup routed througl thus
Three techniques can mitigate the effect of invisiblgkips overR to N, the next node in the key space with
nodes on |00kUp performance in iterative routing. FirSt,Vﬁhich P can communicatd\, however, knows its correct
DHT can use virtual coordinates such as those computgddecessor in the network, and therefore knows that it is

by Vivaldi [7] to choose tighter timeouts. This techniqufiot the root fork. It thus forwards the lookup around the
should work well in general, although we have found thghg, and a loop is formed.

the Vivaldi implementations in both Bamboo and Coral |t should be noted that this problem does not occur in
are too inaccurate on PlanetLab to be of muchise.  the original version of the Chord protocol, since a node

SWe note, however, that neither of our Vivaldi implementations duce more accurate coordinates on PlanetLab [17]; it is plesthat
clude the kinds of filtering used by Pietzuch, Ledlie, andZ&elto pro- their implementation would produce more accurate timeout galue
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to the root, in which case it expects an acknowledgment
of its request in return. Likewise, with a get request, it
expects to receive any values stored under the given key.
In one very important case, it routes a request to join the
DHT to the root and expects to receive the root’s leaf set
or successor list in return.

As shown in Figure 5, when a sourBeoutes a request
recursively to the rodR, the most obvious and least costly
way for R to respond is to communicate withdirectly

—— Standard Join/Put/Get Path over IP. While this approach works well in the common
ﬁ:tema:e getu”‘ E::E ; case, it fails with non-transitivity; the existence of ateu
i ernate rReturn
—c— from Sto R through the overlay does not guarantee the

existence of the direct IP route back. We know of two
Figure 5: Broken return paths.Although S can route a solutions to this problem.
put or get request tR through the overlay, there may be The first solution is to source route the message back-
no direct IP route back frorR to S. One alternative is to wards along the path it traveled froBito R in the first
route the result back along the path taken fi®to R; the place, as shown by the dotted line in Figure 5. Since
other is to route through a random neighfor each node along the path forwarded the message through
a neighbor that had been responding to its probes for live-
ness, it is likely that this return path is indeed routable. A
does not forward a lookup request to the target node [28twnside of this solution is that the message takes sev-
instead the predecessor of the target node returns the éaat hops to return to the client, wasting the bandwidth of
get node to the requester. However, this operation wouldiltiple nodes'
introduce an extra RTT delay in forwarding hpacket, A less costly solution is to have source route its re-
and still will not eliminate the problems created by norsponse tdS through a random member of its leaf set or
transitive routing (see the example in Figure 1). successor list, as shown by the dashed line in Figure 5.
Bamboo and Kademlia avoid routing loops by defirFhese nodes are chosen randomly with respeBtitself
ing a total ordering over nodes during routing. In thegby the random assignment of node identifiers), so most
networks, a nodé\ only forwards a lookup on kek to of them are likely to be able to route & Moreover, we
another nod@® if [B—k| < [A—k|, where “-" represents already know thaR can route to them, or it would not
modular subtraction in Bamboo and XOR in Kademlia. have them as neighbors.
Introducing such a total ordering im3-Chord is A problem with both of these solutions is that they
straightforward: instead of forwarding a lookup towardsaste bandwidth in the common case wh&ean in-
the root, a node can stop any lookup that has alreaglyed send its response directlySoTo avoid this waste,
passed its root. For example, whiinreceives a lookup we haveS acknowledge the direct response fr&nlf R
for kfrom P, itknows something is amiss sinBec k <N, fails to receive an acknowledgment after some timeRut,
butN is not the direct successorkfAn alternative mech- source routes the response back (either along the request
anism for preventing loops would be to store a key on if@th or through a single neighbor). This timeout can be
predecessor node, rather than its successor node [6]. chosen using virtual coordinates, although we have had
Stopping a lookup in this way avoids loops, but it igifficulty with Vivaldi on PlanetLab as discussed earlier.
often possible to get closer to the root for a key by routingternatively, we can simply choose a conservative time-
along predecessor links once normal routing has stoppedt value: as it is used only in the uncommon case where
i3's Chord implementation backtracks in this way. Fa® cannot route directly &, it affects the latency of only a
example, the dashed lines fraback toR in Figure 4 few requests in practice. Bamboo/OpenDHT routes back
show the path of the lookup using predecessor links. ffrough a random leaf-set neighbor in the case of non-
guarantee termination when backtracking, once a packenhsitivity, using a timeout of five seconds.
begins following predecessor links it is never again routedWe note that iterative routing does not directly suffer
along forward links. from this problem. Sinc&directs the routing process it-
self, it will assumeR is down and look for an alternate
rootR (i.e., the node that would be the rooRfwere ac-
4.3 Broken Return Paths tually down). Of course, depending on the applicati@h,

Often an application built atop a DHT routing layer W?'”Ls 4A similar approach, wher® uses the DHT’s routing algorithm to
to not only route to the root of a key but also to retrieVi@ute its response 8s identifier, has a similar cost but a lower likeli-
some value back. For example, it may route a put requiesid of success in most cases, so we ignore it here.
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ity has been provided in this manner, existing techniques
(e.g., [4]) can be used to provide consistency.

An alternative approach used by both DHash [5] and
OpenDHT [18] is to solve the inconsistent root problem
at the application layer. Consider the traditional put/get
interface to hash tables. As shown in Figure 6, DHash
sends a put request fro8) for a key-value paifk,v) to
ther closest successorskfeach of which stores a replica
— put Path of (k,v).> In the figure,R cannot communicate witR/,
~_-- GetPath and hence the wrong set of nodes store replicas.

Replica Synchronizatior To handle this case, as well as normal failures, the
nodes in each successor list periodically synchronize with
each other to discover values they should be storing
Figure 6: Inconsistent rootsA put from S; is routed to (See [5, 18] for details). As shown in the figu, syn-
the root,R, which should replicate it oR,C,D. But since chronizes withrC—E and learns about the value put 8y,
R cannot communicate witR, it replicates it orC-E in- A subsequent get request froa which is routed toR
stead.R will later acquire a replica during synchronizawill thus find the value despite the non-transitivity.
tion with C-E. Of course, ifR fails to synchronize witlc—E between

the put fromS; and the get fron%,, it will mistakenly send

an empty response for the get. To avoid this case, for each
may not be a suitable replacement Ryrbut that reduces get request on ke, DHash and OpenDHT query multi-
to the inconsistent root problem, which we discuss nexple successors & For example, in the figurd¥ would
send the get request @-E, and all four nodes would re-
spond toS,;, which would then compile a combined re-
sponse. This extra step increases correctness at the cost of
ti- reased latency and load; OpenDHT uses heuristics to
&ide when this extra step can be eliminated safely [19].

4.4 Inconsistent Roots

The problems we have discussed so far are all rou
problems. In this section, we discuss a problem cau
by non-transitivity that affects the correctness of the par
titioning of the DHT key space.

Most DHT applications assume that there is only o :
root for a given key in the DHT at any given time. AS Conclusion

shown in Figure 6, however, this assumption may be in- . . . .
valid in the presence of non-transitivity. In the figurd? thiS paper, we enumerated several ways in which naive

nodeR is the proper root of kel, but sinceR andR’ can- DHT implementations break down undesn-transitivity

not communicateR mistakenly believes it is the root forand We presented our experiences in dealing with the

k. A lookup fromS; finds the correct root, but a lookupProblems when building and deploying three indepen-

from S, travels through nodé, which also cannot com- 4€nt DHT-based systems—OpenDHT [21] that uses Bam-

municate withR, and terminates instead &t boo [20],i3 [2_4] that uses Chord [2'_5], and Coral [9]_ that
Prior work has explored the issue of multiple roots dises Kademiia [13]. While we believe that the ultimate

to transient conditions created by nodes joining and led@n9-térm answer to dealing with issues arising from non-

ing the overlay, but has not explored the effects of misg&@nsitivity is perhaps a fresh DHT design, we hope that,
havior in the underlying network [4]. at least in the short term, this work will save others the

Given a complete partition of the network, it is difficulfffrt of finding and fixing the problems we encountered.
to solve this problem at all, and we are not aware of any
existing solutions to it. On the other hand, if the degree of
non-transitivity is limited, the problem can be eliminate
by the use of a consensus algorithm. The use of suchal-
gorithms in DHTs is an active area of research [14, 22]. .

Nonetheless, consensus is expensive in messagesti?ﬁjaUthorS would I|k<_e to thank Frank Dabek, Jaya_mthku—
bandwidth, so many existing DHTS use a probabilistic af!&" Kannan, and Sriram Sankararaman for their com-
proach to solving the problem instead. For example, Fré&€nts which helped to improve the paper.

Pastry 1.4.1 maintains full link-state routing informatio
for each leaf set, and a node is considered alive if any othespyash actually stores erasure codes rather than replicaghé
member of its leaf set can route to it [2]. Once routabidistinction is not relevant to this discussion.
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