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The Challenges

• Maintenance
– Many components, many administrative domains
– Constant change
– Must be self-organizing
– Must be self-maintaining
– All resources virtualized—no physical names

• Security
– High availability is a hacker’s target-rich environment
– Must have end-to-end encryption
– Must not place too much trust in any one host
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The Technologies: Tapestry

• Tapestry performs

Distributed Object Location and Routing

• From any host, find a nearby…
– replica of a data object

• Efficient
– O(log N ) location time, N = # of hosts in system

• Self-organizing, self-maintaining



The Technologies: Tapestry (con’t.)
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The Technologies: Erasure Codes

• More durable than replication for same space

• The technique:
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The Technologies: Byzantine Agreement

• Guarantees all non-faulty replicas agree
– Given N =3f +1 replicas, up to f may be 

faulty/corrupt

• Expensive
– Requires O(N 2) communication

• Combine with primary-copy replication
– Small number participate in Byzantine agreement
– Multicast results of decisions to remainder



Putting it all together: the Path of a Write
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Prototype Implementation

• All major subsystems operational
– Self-organizing Tapestry base
– Primary replicas use Byzantine agreement
– Secondary replicas self-organize into multicast tree
– Erasure-coding archive
– Application interfaces: NFS, IMAP/SMTP, HTTP

• Event-driven architecture
– Built on SEDA

• 280K lines of Java (J2SE v1.3)
– JNI libraries for cryptography, erasure coding



Deployment on PlanetLab

• http://www.planet-lab.org
– ~100 hosts, ~40 sites
– Shared .ssh/authorized_keys file

• Pond: up to 1000 virtual nodes
– Using custom Perl scripts
– 5 minute startup

• Gives global scale for free
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Performance Results: Andrew Benchmark

• Built a loopback file server in Linux
– Translates kernel NFS calls into OceanStore API

• Lets us run the Andrew File System Benchmark
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Performance Results: Andrew Benchmark

OceanStore

Phase

I

II

III

IV

V

Total 47.0 54.9 120.3

(times in milliseconds)

NFS 512 1024

0.9 2.8 6.6

9.4 16.8 40.4

8.3 1.8 1.9

6.9 1.5 1.5

21.5 32.0 70.7

• Pond faster on reads: 4.6x 
– Phases III and IV
– Only contact primary when 

cache older than 30 seconds

• Ran Andrew on Pond
– Primary replicas at UCB, UW, 

Stanford, Intel Berkeley
– Client at UCB
– Control: NFS server at UW

• But slower on writes: 7.3x
– Phases I, II, and V
– Only 1024-bit are secure
– 512-bit keys show CPU cost



Closer Look: Write Cost

• Byzantine algorithm adapted from Castro & Liskov
– Gives fault tolerance, security against compromise
– Fast version uses symmetric cryptography

• Pond uses threshold signatures instead
– Signature proves that f +1 primary replicas agreed
– Can be shared among secondary replicas
– Can also change primaries w/o changing public key

• Big plus for maintenance costs
– Results good for all time once signed
– Replace faulty/compromised servers transparently



Closer Look: Write Cost

• Small writes
– Signature dominates
– Threshold sigs. slow!
– Takes 70+ ms to sign
– Compare to 5 ms for 

regular sigs.

Phase
4 kB 
write

2 MB 
write

Validate
Serialize
Apply
Archive
Sign Result

0.3 0.4
6.1 26.6
1.5 113.0
4.5 566.9

77.8 75.8

(times in milliseconds)
• Large writes

– Encoding dominates
– Archive cost per byte
– Signature cost per write



Closer Look: Write Cost

(run on cluster)



Closer Look: Write Cost

• Throughput in the wide area:

Primary location Client location Tput (MB/s)
Cluster 
Cluster
Bay Area PlanetLab 1.19

(archive on)

Cluster 2.59
PlanetLab 1.22

• Wide Area Throughput
– Not limited by signatures
– Not limited by archive
– Not limited by Byzantine process bandwidth use
– Limited by client-to-primary replicas bandwidth
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Closer look: Dissemination Tree
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Closer look: Dissemination Tree

• Self-organizing application-level multicast tree
– Connects all secondary replicas to primary ones
– Shields primary replicas from request load
– Save bandwidth on consistency traffic

• Tree joining heuristic (“first-order” solution):
– Connect to closest replica using Tapestry

• Take advantage of Tapestry’s locality properties
– Should minimize use of long-distance links
– A sort of poor man’s CDN



Performance Results: Stream Benchmark

• Goal: measure efficiency of dissemination tree
– Multicast tree between secondary replicas

• Ran 500 virtual nodes on PlanetLab
– Primary replicas in SF Bay Area
– Other replicas clustered in 7 largest PlanetLab sites

• Streams writes to all replicas
– One content creator repeatedly appends to one object
– Other replicas read new versions as they arrive
– Measure network resource consumption



Performance Results: Stream Benchmark

• Dissemination tree uses network resources efficiently
– Most bytes sent across local links as second tier grows

• Acceptable latency increase over broadcast (33%)



Related Work

• Distributed Storage
– Traditional: AFS, CODA, Bayou
– Peer-to-peer: PAST, CFS, Ivy

• Byzantine fault tolerant storage
– Castro-Liskov, COCA, Fleet

• Threshold signatures
– COCA, Fleet

• Erasure codes
– Intermemory, Pasis, Mnemosyne, Free Haven

• Others
– Publius, Freenet, Eternity Service, SUNDR



Conclusion

• OceanStore designed as a global-scale file system

• Design meets primary challenges 
– End-to-end encryption for privacy
– Limited trust in any one host for integrity
– Self-organizing and maintaining to increase usability

• Pond prototype functional
– Threshold signatures more expensive than expected
– Simple dissemination tree fairly effective
– A good base for testing new ideas



More Information and Code Availability

• More OceanStore work
– Overview: ASPLOS 2000
– Tapestry: SPAA 2002

• More papers and code for Pond available at

http://oceanstore.cs.berkeley.edu
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