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The OceanStore “Vision”
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The Challenges

e Maintenance
— Many components, many administrative domains
— Constant change
— Must be self-organizing
— Must be self-maintaining
— All resources virtualized—no physical names

e Security
— High availabllity is a hacker’s target-rich environment
— Must have end-to-end encryption
— Must not place too much trust in any one host
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The Technologies: Tapestry

Tapestry performs
Distributed Object Location and Routing

From any host, find a nearby...
— replica of a data object

Efficient
— O(log V) location time, N = # of hosts in system

Self-organizing, self-maintaining



The Technologies: Tapestry (con’t.)
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The Technologies: Erasure Codes

e More durable than replication for same space

e The technique:
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The Technologies: Byzantine Agreement

e Guarantees all non-faulty replicas agree

— Given N =3f+1 replicas, up to ¥ may be
faulty/corrupt

e Expensive
— Requires O(N2) communication

e Combine with primary-copy replication
— Small number participate in Byzantine agreement
— Multicast results of decisions to remainder



Putting It all together: the Path of a Write
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Prototype Implementation

e All major subsystems operational
— Self-organizing Tapestry base
— Primary replicas use Byzantine agreement
— Secondary replicas self-organize into multicast tree
— Erasure-coding archive
— Application interfaces: NFS, IMAP/SMTP, HTTP

e Event-driven architecture
— Built on SEDA

e 280K lines of Java (J2SE v1.3)
— JNI libraries for cryptography, erasure coding



Deployment on PlanetLab

e http://www.planet-lab.org
— ~100 hosts, ~40 sites
— Shared .ssh/authorized_keys file

e Pond: up to 1000 virtual nodes
— Using custom Perl scripts
— 5 minute startup

e Gives global scale for free g Sl
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Performance Results: Andrew Benchmark

e Built a loopback file server in Linux
— Translates kernel NFS calls into OceanStore API

e Lets us run the Andrew File System Benchmark

#UCY Pond

Andrew I
Daemon

Loopback
Server

Benchmark

fwrite syscall l NFS WriteT

Network

Msg to Primary



Performance Results

e Ran Andrew on Pond

— Primary replicas at UCB, UW,
Stanford, Intel Berkeley

— Client at UCB
— Control: NFS server at UW

e Pond faster on reads: 4.6x
— Phases Il and IV

— Only contact primary when
cache older than 30 seconds

e But slower on writes: 7.3x
— Phases I, Il, and V
— Only 1024-bit are secure
— 512-bit keys show CPU cost

- Andrew Benchmark

OceanStore
Phase | NFS| 512| 1024
I 09| 2.8 6.6
[ 94| 16.8| 40.4
1 8.3 1.8 1.9
Y 6.9 1.5 1.5
V 21.5| 32.0{ 70.7
Total | 47.0| 54.9| 120.3

(times in milliseconds)




Closer Look: Write Cost

e Byzantine algorithm adapted from Castro & Liskov
— Gives fault tolerance, security against compromise
— Fast version uses symmetric cryptography

e Pond uses threshold signatures instead
— Signature proves that £+1 primary replicas agreed
— Can be shared among secondary replicas
— Can also change primaries w/o changing public key

e Big plus for maintenance costs
— Results good for all time once signed
— Replace faulty/compromised servers transparently



Closer Look: Write Cost

e Small writes 4 kB| 2 MB
— Signature dominates Phase write | write

— Threshold sigs. slow! Validate 03| 04

— Takes 70+ ms to sign Serialize 6.1| 26.6

— Compare to 5 ms for Apply 1.5| 113.0
regular sigs. Archive 4.5|| 566.9

Sign Result /7.8 75.8

e Large writes
— Encoding dominates
— Archive cost per byte
— Signhature cost per write

(times in milliseconds)



Closer Look: Write Cost

Update Throughput vs. Update Size

Ops/s, Archive Disabled
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Closer Look: Write Cost

 Throughput in the wide area:

Primary location

Client location

Tput (MB/s)

Cluster
Cluster
Bay Area

Cluster
PlanetLab
PlanetLab
(archive on)

 Wide Area Throughput
Not limited by signatures

Not limited by archive

2.59
1.22
1.19

Not limited by Byzantine process bandwidth use
Limited by client-to-primary replicas bandwidth
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Closer look: Dissemination Tree
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Closer look: Dissemination Tree

e Self-organizing application-level multicast tree
— Connects all secondary replicas to primary ones
— Shields primary replicas from request load
— Save bandwidth on consistency traffic

e Tree joining heuristic (“first-order” solution):
— Connect to closest replica using Tapestry
e Take advantage of Tapestry’s locality properties
— Should minimize use of long-distance links
— A sort of poor man’s CDN



Performance Results: Stream Benchmark

e Goal: measure efficiency of dissemination tree
— Multicast tree between secondary replicas

e Ran 500 virtual nodes on PlanetLab
— Primary replicas in SF Bay Area
— Other replicas clustered in 7 largest PlanetLab sites

e Streams writes to all replicas
— One content creator repeatedly appends to one object
— Other replicas read new versions as they arrive
— Measure network resource consumption



Performance Results: Stream Benchmark

% Bytes Sent vs. Link RTT
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e Dissemination tree uses network resources efficiently
— Most bytes sent across local links as second tier grows

e Acceptable latency increase over broadcast (33%)



Related Work

Distributed Storage
— Traditional: AFS, CODA, Bayou
— Peer-to-peer: PAST, CFS, lvy

Byzantine fault tolerant storage
— Castro-Liskov, COCA, Fleet

Threshold signatures
— COCA, Fleet

Erasure codes
— Intermemory, Pasis, Mnemosyne, Free Haven

Others
— Publius, Freenet, Eternity Service, SUNDR



Conclusion

e OceansStore designed as a global-scale file system

e Design meets primary challenges
— End-to-end encryption for privacy
— Limited trust in any one host for integrity
— Self-organizing and maintaining to increase usability

e Pond prototype functional
— Threshold signatures more expensive than expected
— Simple dissemination tree fairly effective
— A good base for testing new ideas



More Information and Code Availability

e More OceanStore work
— QOverview: ASPLOS 2000
— Tapestry: SPAA 2002

e More papers and code for Pond available at

http://oceanstore.cs.berkeley.edu
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