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Abstract

OpenDHT: A Public DHT Service

by

Sean Christopher Rhea
Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor John Kubiatowicz, Chair

The distributed hash table, or DHT, is a distributed system that provideditanal hash
table’s simple put/get interface using a peer-to-peer overlay networkTsOi¢liver incremental
scalability in the number of nodes, high availability, and low latency.

We present the Bamboo DHT and the OpenDHT public DHT service. Bamigmmosts
low-latency under very high churn rates; with session times as short asirsites, a 1000-node
Bamboo network on ModelNet is still able to average around one half dgoeinget operation.
Bamboo also supports reliable, high-performance storage on a 200e8@0PlanetLab deploy-
ment. It provides very high availability as measured over months, and it mantaiy low get
latencies despite the presence of arbitrarily slow nodes. Furthermarddgeis resilient to non-
transitivity in the underlying network, a requirement for long-term use eririternet.

OpenDHT is a public DHT service designed to ease the deployment and naaioéeof
DHT-based applications. By providing an existing deployment with a simplegdtiterface over
RPC, OpenDHT allows the construction of DHT applications in tens of line®déc OpenDHT
provides a simple, secure put/get/remove interface, and it also suppoasaptisticated features
such as anycast, multicast, and range search using client-side libratigherfmore, OpenDHT
guarantees a fair share of storage to each client in the system, whilafmeweny client from going
long periods without being able to perform any puts at all. At the time of this \grit®penDHT
has been running as a public service on PlanetLab for over 16 months.

Professor John Kubiatowicz
Dissertation Committee Chair
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Chapter 1

Introduction

Large-scale distributed systems are notoriously difficult to design, implerdeptoy,
and debug. Consequently, there is a long history of research that airasedhe construction of
such systems by providing simple primitives on which more sophisticated fuattiooan be built.
Examples include remote procedure call (RPC) [BN84], the domain nanensyBNS) [MD88];
fault-tolerant, replicated state machines [CRLO3]; causal, atomic multicaSgBSand epidemic
communication primitives [DGH87].

A more recent addition to this list is the distributed hash table, or DHT [RDOH,RH,
SMK*01,ZHS'04]. A hash table is a data structure that provides two main functipustakes
a key and value and stores them in the table, geidakes a key and returns the value (if any)
previously put under that key. A distributed hash table provides this saeréeice, but partitions
the key space across a set of cooperating peers to provide incrersesitbility, and replicates
each key-value pair for high availability.

Figure 1.1 shows an example DHT. Seven nodes participate in the systerteakely
space is divided between them. An overlay network connects the nodes e node in the lower
left corner puts a key-value pair into the DHT, the put request is routdtetaode responsible for
the key in question, and that node stores the pair. When the node on theilgivtdater tries to get
all values with that key, the get request is routed to the same node, andritsrehe value previously
put.

Without going into detail, we review the basic benefits of DHTs. First, theeaable;
additional capacity can be added to the system by simply adding more nodesnds$ they are
fault-tolerant; although not shown in the picture, DHTs generally store ealae on several nodes,

so that no value will be lost with the failure of any one node. A related poitiias DHTs are



stores (key,value)

y [ valug

T

il

I ﬂ

get(key)
put(key,value)

Figure 1.1:A distributed hash table.

completely decentralized; there is no one point of control, and henceennaite that will disable
the system by its failure. Third, DHTs can be built up entirely on existinguess; there is no
need for expensive, managed infrastructure on which to host thersyste

In practice, there are a number of challenges to building such a systerbefoue we
move forward from this simple description, we first describe two DHT apiiticg, in order to give
a concrete notion of the utility of DHTSs.

1.1 Two Example DHT Applications

Two DHT applications—the Coral content distribution network [FFM04] tred~eedTree
cooperative news service [SMPDO05]—have recently gained somdarapuAlthough we did not
build these applications ourselves, they nicely illustrate the utility of DHTs. Indéddion we
describe both applications at a high level. Our intent here is purely pgitadgjowe will omit or
modify details as necessary for clarity of presentation. For a completecandsée description of
either application, the reader is referred to the publications cited above.

1.1.1 Coral

The Coral content distribution network (CDN) allows a group of web sitepriect
themselves against flash crowds by cooperatively serving each 'atbetent. Figure 1.2 illus-
trates the Coral system. When Client 1 fetches a web page from seoveofio, Coral intercepts
request, routing it through server bar.com. When foo.com respoadsp caches a copy of the
response. When Client 2 later fetches the same web page, Coral rauteqlest through bar.com,
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Figure 1.2:The Coral content distribution network.

which returns the web page directly, without contacting foo.com a second limtleis way, Coral

shifts load for foo.com onto its peers; under light usage, this technigeie i significantly help
performance, but when a single server experiences a surge in goputis peers help it to satisfy
the demand.

To reduce the load on a web server, Coral must ensure that subseggeests for that
server's web pages are routed through other sites in the system tlzatyad@ntain cached copies
of those pages. It achieves this feat through the partitioning performedHT; for any given
resource, it uses this partitioning to select a set of servers that wilsaahes for that resource.
Instead of using a DHT, however, Coral could of course use sontmtiead index of resources, or
even a centralized cache. We thus review why a DHT is a particularly gofod €oral.

One major advantage of using a DHT in Coral is that the system containstaina
point of centralization. The web sites that make up the system are each shaélatively low
bandwidth; otherwise, they could handle their own flash crowds and wawiel little motivation to
participate. While the sites could band together to pay for high-bandwiditratized service from
some third party, Coral instead allows them to utilize the bandwidth they alreagiyth accomplish
the same goal.

Another benefit of using a DHT in Coral is that because there is no om giocen-
tralization, any site can opt out of the system at any time. While doing so esdbe effective
bandwidth in the system, it does so only in proportion to the amount of bandthidtithe depart-
ing site was providing. Likewise, when a new site joins, the net bandwidtheadythtem increases
by the bandwidth available from that site. For this reason, we say that stensysincrementally
scalable

While incremental scalability is attractive in its own right, it also provides a stexgn
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Figure 1.3:Cooperative RSS dissemination with FeedTree.

advantage to the system in that it creates a so-cakdork effect the more sites that join the
system, the larger a flash crowd the system as a whole can handle, and ¢hattraative it is for
other nodes to join.

The three advantages Coral achieves by using a DHT—decentralizaticemental scal-
ability, and the network effect—are also realized by FeedTree, as weliegext.

1.1.2 FeedTree

FeedTree is a system for the cooperative dissemination of news. RBetabased on
the Really Simple Syndication (RSS) protocol [rss], we describe that first.

The RSS protocol encapsulates diverse news feeds in a common Xs#éid-firmat. Each
feed usually includes an XML item containing a story title and sometimes a summabstact.
Client programs aggregate multiple feeds into a common user interface. LikketheRSS uses a
pull model, where clients periodically poll the news sources in which theynéeeested to check
whether their feeds have been updated. Unlike the web, however, thigyps usually automated
(as opposed to click-driven). Since this automated polling can severely m&ws source, most
sources limit each client to a minimum polling period (usually 30 minutes).

As shown in Figure 1.3, FeedTree [SMPDO05] uses a DHT-based muksigstetm to push
updated news feeds to clients more quickly. For each news fe@dg., foo.comin the figure)
in which it is interested, a FeedTree cliemtegisters its interest with a DHT (essentially doing a
put(f,a)); when a client discovers a update to a feledt multicasts the update to all interested
clients, which it discovers using the DHT (essentigéf( f)).

A major advantage of FeedTree is that it can be deployed today; thererigatbfor

cooperation with news sites. At the same time, however, without their cdapethere are no



natural points of centralization in the system, and for this reason a DHT istat&raAlso, as with
Coral, FeedTree benefits from a network effect; the more clients that jeisytstem to monitor a
particular news feed, the shorter the aggregate polling period becontetheaquicker each client
sees each news item. Finally, as in Coral, FeedTree clients utilize bandwittoarputational
resources they already have to achieve improved performance; theoensed to pay for this
additional service.

An interesting feature of the FeedTree design is that it uses a single Dt floews
feeds, as opposed to using a different DHT for each feed. Oneutlijffiwith DHTSs is called the
bootstrap problemin order to join the DHT, a node must know of one other node that hasdsglrea
joined. By using a single DHT for all feeds, FeedTree needs only sodvedbtstrap problem once,
amortizing that cost across all feeds.

1.1.3 Discussion

We chose to discuss the two applications above because they are in saee periect
candidate applications for a DHT. They have no natural point of cerdtadiz, they are able to
utilize resources they already have at hand, and the DHT's scalabilitysaitmmn to take advantage
of network effects. There are many other applications that benefit tihennse of DHTs, and we
will describe several more in the course of this work. There are, afsegwther applications for
which a DHT is not a good match. In Sections 2.2 and 2.3 we present a mooaghodiscussion
of the strengths and limitations of DHTSs.

1.2 OpenDHT: The DHT as a Service

The FeedTree application above nicely illustrates a particular point; fortglieterested
in some new news feed that is not yet being multicast by the system, the egistieac up-and-
running DHT to which they are already connected provides an advanRaener than trying to
discover another node interested in the same news feed in order to hpdistthinto a feed-
specific DHT, a client simply does a put to join the multicast group for that, f@@drtizing the cost
of solving the bootstrap problem across all feeds.

Following this reasoning, if multiple distinééedscan share the same DHT, it is natural
to ask under what conditions multiple distiragiplicationscan share the same DHT. In other words,
in the same way that we amortize the bootstrap problem across feeds inréeeddn we also



amortize it across applications through the use of a shared DHT?

Taking this reasoning one step further, we have also explored whethgr—rifanot
most—DHT applications can benefit from sharingiagle DHT deployment. To test this hypoth-
esis, we have built and deployed a system we call OpenDHT. OpenDgibden running contin-
uously on approximately 200-300 widely dispersed Internet hosts sipie2804. Each of these
hosts runs an instance of the Bamboo DHT, the DHT we built, and accepagget requests from
clients outside the system over RPC.

Because OpenDHT operates on a set of infrastructure nodes, lwedipp need concern
itself with DHT deployment, but neither can it run application-specific codthese infrastructure
nodes. This is quite different than most other uses of DHTs, in which th& Eddle is invoked
as a library on each of the nodes running the application. The librarpapipis very flexible, as
one can put application-specific functionality on each of the DHT nodesdrh application must
deploy its own DHT. The service approach adopted by OpenDHT affierspposite tradeoff: less
flexibility in return for less deployment burden. OpenDHT provides a hamagpplications more
suited to this compromise.

Our early experience with OpenDHT indicates that a single, shared Dpidydeent is in
fact broadly useful. In Chapter 5 we further describe our expegidncluding building applications
of our own and supporting those built by others.

1.3 Contributions

We make several contributions in this work.

1.3.1 Lookup in DHTs

The foremost function of a DHT is to partition a key space across a seafsn To allow
clients access to this partitioning, the DHT allows a clienfotokupthe node to which any key is
mapped; for brevity, we call the challenge of providing this functionality thukig problem. In
itself, the problem is simple, and most DHTs handle it in a straightforward Wway.example, in
one approach, each node is assigned a key at random, and eacimleppisd to the node to whose
key it is numerically closest.

The lookup problem becomes more interesting when new nodes join the syst&isting
nodes fail, and the DHT must re-partition the key space dynamically. We testedal early DHT



implementations under a continuous process of arrivals and failureseaity that none of them
performed as well as we expected, we built a new DHT called Bamboo taisg with doing
better. We made several important discoveries.

Node failure, in particular, is difficult. All DHT algorithms specify how failsrehould
be handled, but since DHTs run on the wider Internet, it is often difficudrinmplementation
to quickly distinguish the failure of a node from a failure or congestion ewarthe path to that
node. In our work, we have shown that two basic techniques are ci¢edirmount this prob-
lem, and we demonstrate the importance of these two techniques with compaoisither DHT
implementations.

First, a DHT should route around suspected failures quickly, in much lessthiameis
needed to confirm that they are actual failures. The overlay netwaiksbly DHTs have many
redundant paths between two nodes, and when a primary path appeltysif is better to route
quickly through some secondary path than to wait for the primary one teeeco

Second, DHT nodes should not recover from the failure of their neighin the overlay
reactively but periodically. Often times a suspected failure is in fact only a period of congestion
in the network, and in reacting directly to that suspected failure by trying tbdimeplacement
neighbor, a node runs the risk of further increasing the congestioteth& it. In the worst case,
this reaction can lead to a positive feedback cycle in which a node overtmade network path,
partitioning the overlay. In contrast, by recovering periodically, a DH@lendecouples the rate
of its own recovery traffic from the congestion it experiences, pravgrsuch positive feedback
cycles.

Third, the process of new nodes joining the network presents its owrf geblolems.
When a new node joins, the network must re-partition the key space to givadbe a share, and
the new node must find suitable neighbors within the overlay network. Fésrpeance reasons,
most DHT algorithms endeavor to choose some of a node’s neighbors teaeynin network
latency, and the algorithms to accomplish this task are often complicated andltiffitnplement.
In our work we demonstrate that much of this complexity is unnecessarysitnater methods
based on random sampling do just as well for the same bandwidth cost.

Our contributions concerning lookup in DHTs appear in Chapter 3.



1.3.2 Storage in DHTs

While the lookup interface is the most general one offered by DHTs, mbent @p-
plications prefer the higher-level put/get interface provided by traditibash tables. In a simple
implementation of this interface, to put a value into the DHT, a node sends ageessataining
the given key and value to the node discovered by looking up the key.nbda then stores the key
and value in a hash table in its local memory or disk. To perform a get, a neessatpining the
key is sent to the node discovered by looking up the key; that node tlesnadget against its local
hash table and sends back any values it finds.

Another high-level interface that is often built above lookup is called beakzed Object
Location and Routing, or DOLR [ZHS)4]. In this interface, clients inform the DHT as to what
objects they are storing; other clients can then query the DHT to find cliemitsgstdbjects in which
they are interested. DOLR is usually implemented in a manner similar to put/gettiabgetie
DHT just stores pointers to objects rather than the objects themselves.

In implementing either the put/get or DOLR interface over DHT lookup, the maiii ad
tional functionality that is needed is the storage of values or pointers lrgier We will thus refer
to this general problem as tiséorageproblem.

As with lookup, the primary challenges in the storage problem are the failwesiing
nodes and the arrival of new ones. To prevent data loss due to aibgie f the DHT must store
data redundantly across multiple nodes. When nodes fail, this redundaurstybe restored. While
we were not the first to propose this idea, we developed one of thefficséigt mechanisms for
implementing it.

Our contributions concerning the storage problem appear in Chapter 4.

1.3.3 OpenDHT: A Public DHT Service

As noted above, many applications make such generic use of a DHT thatoinbe
attractive to share a single DHT deployment between them. Along these liadswe developed
and deployed OpenDHT, a public DHT service running on the PlanetLakete§#ly 04] for the
last 16 months. OpenDHT is shared both among applications and among @isshisach type of

sharing raises a new design problem.

An Interface for a shared DHT For a DHT to be shared effectively by many different applica-

tions, its interface must balance the conflicting goals of generality andofase. Generality is



necessary to meet the needs of a broad spectrum of applications, lnietfigce should also be
easy for simple clients to use.

The lookup interface described above, while clearly quite general, iblesome in a
shared service. In particular, the strength of the lookup interface ipgiieation-specific code that
is installed in the DHT. For example, when implementing put/get on top of lookugfitunality is
added to each DHT node to handle put and get messages, manage dadganey, etc. Distributing
the code for arbitrary applications to all nodes in a DHT, and running thie securely such that
applications do not interfere with each other, is a challenging problem.

In contrast, the put/get interface is less flexible, allowing no access to afiptiespecific
code. This lack of flexibility limits the spectrum of applications it can suppottitdtees the DHT
from dealing with the vagaries of application-specific code. In the dedi@penDHT, we place
a high premium on simplicity. We want an infrastructure that is simple to opernatiea @ervice
that simple clients can use. Thus the storage model, with its simple put/get infexé@oes most
appropriate.

To get around the limited functionality of the put/get interface, we use a rotiesit |i-
brary, Recursive Distributed Rendezvous (ReDiR), which we desdnildetail in Section 5.2.2.
ReDiR, in conjunction with OpenDHT, provides the equivalent of a lookugrface for any arbi-
trary set of machines (inside or outside OpenDHT itself). Thus clients IR&YR achieve the
flexibility of the lookup interface, albeit with a small loss of efficiency (whicé gescribe later).

Storage allocation in a shared DHT The second type of sharing we consider is sharing between
mutually untrusting clients. In offering a put/get interface, OpenDHT isrg¢&8ly a public storage
facility. As observed in [RH03, BMPO3], if such a system offers thesjgtent storage semantics
typical of traditional file systems, the system will eventually fill up with orpltadata. Garbage
collection of this unwanted data seems difficult to do efficiently.

OpenDHT must thus carefully manage the allocation of its storage resooetesen
clients. While ample prior work has investigated bandwidth and CPU allocatidraned settings,
storage allocation has been studied less thoroughly. In particular, thardekcate tradeoff be-
tween fairness and flexibility: the system shouldn’t unnecessarily refteédehavior of clients by
imposing arbitrary and strict quotas, but it should also ensure that altchenre access to their fair
share of service.
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Experiences with a shared DHT In addition the technical contributions above, we have also
gained a good deal of experience particular to running a shared Dpldyheent over the last 16
months. Many of the design decisions we initially felt would be most important hawned out
to matter much less than others we did not expect. Simplicity and ease-obusxample, have
shown to be of paramount importance for adoption.

Our experiences designing, deploying, and running OpenDHT actided in Chapter 5.

1.3.4 DHT Practicalities

Our final two contributions in this work concern how to deal with two realitieslief
tributed systems rarely explored by prior work: the non-transitivity ofrmeconnectivity, and the

problem of correct, but arbitrarily slow nodes. We cover each in a shaipter of its own.

Non-transitive connectivity A universal, but unstated, assumption of all DHT algorithms of
which we are aware is transitivity of connectivity in the public Internet. Ireothords, if node
A can contact nodB, and nodeB can in turn contact nodg, then it is always assumed to be the
case that noda can also contact node In reality, it is well known that the Internet does not exhibit
this property; while it is true in general that any two hosts can communicate aaith @her even-
tually,® it is also the case that failures and misconfigurations of the Internet’s goafirastructure
can lead to periods of hours or longer where the transitivity of conrigciswiolated.

As one might expect, overcoming the violation of this fundamental assumptioi®f D
designs requires modification of many parts of the system, from the lookep lgythrough the
storage layer. Nevertheless, the problems are not insurmountable;dditia@uroutinely see vi-
olations of transitive connectivity in our PlanetLab deployment, OpenDHDigetheless able to
successfully perform puts and gets during these periods. We desaiilveork on this problem in
Chapter 6.

Arbitrarily slow nodes A persistent problem with our OpenDHT deployment has been that the
distribution of the latencies of get operations has a very long tail. As one migigtct, this tail is
caused by a few, arbitrarily slow PlanetLab nodes. We have obseistededds that take tens of

seconds, computations that take hundreds of times longer to performatisnes than others, and

INote that we are only talking here about hosts onphblic Internet; of course we expect hosts behind network
address translators (NATSs) or firewalls to exhibit some degree ofgrent non-transitive connectivity.
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internode ping times well over a second. Furthermore, the set of slowsned®t constant over
time, so we cannot very well “cherry pick” a set of good nodes on wtoaiuin OpenDHT.

While it is tempting to blame OpenDHT's performance problems on PlanetLals; ane
dotal evidence suggests that the problems we have observed with Plaaet @ommon in other
large-scale systems. Instead, it seems, the difference between Plaaatlather large distributed
systems is only the size of the system at which such effects are obseottite fundamental nature
of the effects themselves.

Since it seems the problem of slow nodes may be endemic to large distributechsys
then, we believe the most appropriate response to it is to modify our systearésibient to such

behavior. We demonstrate our success with such techniques in Chapter 7.

1.4 Assumptions

Before continuing, we explicitly state two assumptions that limit the scope of this.wo

First, we do not discuss the design or implementation of strongly consistérilbutisd
systems. Instead, Bamboo and OpenDHT offer only eventually consggerdntics, in the style
of Bayou [PST 97]. This approach is in line with the majority of the literature on DHTs, although
there are notable exceptions [MGMO05, LMR02, RL0O3]. We view the dgraknt of DHTs with
stronger semantics as important and valuable work, but note that themerasrous applications
for which eventual consistency is sufficient; the list in Table 5.4 providesrsl examples. As such,
we leave stronger consistency to future work.

Second, a major benefit of DHTs is that they are applicable in situations irmligce
is no natural point of centralization. In the case where such a point eaistscan of course offer
the same or similar semantics provided by a DHT with a centralized system, eithenting a
DHT on a cluster or by the use of some other architecture. As clusterstgrive scale of tens of
thousands of nodes, the use of DHT-like techniques within them may becomeeesting area of
research. In this work, however, our goal is to simplify the constructfatalable systems using
existing, distributed resources, and we consequently leave the casetiilized systems to future

work.
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1.5 Summary

Distributed hash tables are a promising building block on which more sophistideste
tributed applications can be built. In this thesis we explore several importabteps in their
design, implementation, and deployment. We start in Chapter 2 by providingtempbackground
information related to DHTs. Next, we cover two fundamental challengesiettk@p and storage
problems—in Chapters 3 and 4, respectively. The solutions to these thiepr®are implemented
in Bamboo, the DHT we designed and built. We then explore how a single depldyof Bam-
boo can be shared as a public service among multiple applications, an ided WpenDHT, in
Chapter 5. Running the OpenDHT service over time has also exposedaygtalsnteresting prac-
ticalities that arise in running a large DHT deployment on the Internet (r&ttharin simulation, for
example), and we cover two of these in Chapters 6 and 7. Finally, we cmiclChapter 8.
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Chapter 2

Background

This chapter provides an introduction to DHTs. To make the discussiorretenave
begin with a high-level description of the Bamboo DHT as an example. We geethis description
as a starting point to review the advantages and limitations of DHTs, and w&iderthe chapter

with a survey of related work in the area.

2.1 The Bamboo DHT

The key space used by Bambodigiso, the integers modulo*$®. Bamboo assigns each
node a unique identifiar € Ziso uniformly at randont. For convenience, we will name nodes by
their identifiers. Furthermore, let prdd be the node whose identifier most immediately precedes
K in Zxeo, and let sucgk) be the node whose identifier most immediately succéedBamboo
partitionsZ,ie0 between the nodes in the DHT by mapping eachiesgto the noda that minimizes
|k —n| mod 299, or onto suc(k) if there are two such nodes. The node onto whids mapped is
called theroot for k.

To maintain this mapping, each Bamboo nodeeps track of both préd) and suc¢n);
we call these two nodes itwedecessoandsuccessarBy knowing its predecessor and successor
a node can compute exactly which keys it is responsible for under the ngappince the set of
predecessor and successor links form a circular doubly-linked bsteles the nodes in the overlay,
we often refer to the network agiag.

The process of computing onto which node a key is mapped is dalidp To perform

Lin practice, we assign a node with IP addrasistening on porip the identifierH (a- p), whereH is the SHA-1 hash
function and represents concatenation.
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Figure 2.1:A Bamboo node’s neighboré. node’s neighbors are divided into iesaf sef shown as
dashed arrows, and itsuting table shown as solid arrows.

a lookup on key, a node can simply route a message around the ring until it reaches tHierngot

but this technique is neither efficient nor robust. It is inefficient beeausokup may be forwarded
all the way around the ring before reaching the root. It is fragile sincdod® of even a single
node in the DHT will break the ring, rendering some lookups impossible. Barfikes these two

shortcomings through the use of two separate sets of neighbors maintgiaadHnode. Both sets
are illustrated in Figure 2.1.

The first set of these neighbors increases the robustness of the qag@dding redun-
dancy to the ring. Let pre(k) be the result of applying pred toi times (fori > 0), and let sug¢k)
be defined similarly. Théeaf setof a noden is the set of nodes prgah) and sucgn) fori € [1,/].

We call/ theradiusof the leaf set.

The second set of neighbors a node maintains allows it to perform lookops effi-
ciently. A node’srouting tableis a set of nodes whose identifiers share successively longer grefixe
with its own identifier. Given some ba& and for every prefiyp of n, noden has a neighbor with
prefix p-d for each digitd € [0,B), where- represents concatenation (if such a node exists). As
illustrated in Figure 2.1, foB = 2 this method of choosing routing table entries corresponds to each
node knowing some node on the opposite half of the ring, on the oppositegakits own half,
on the opposite eighth of its own quarter, etc.

A Bamboo node performs a lookup on kieypy matching as long a prefix &fas it can
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Figure 2.2: A lookup in Bamboo.To find the node closest to identifier 01101, the node whose
identifier starts with 111 sends a lookup message to its neighbor whosedditssd. This node
then forwards the query to its neighbor whose first two digits are 01, rmd there the node is
forwarded to the neighbor whose first three digits are 011. A final hauut/h a leaf set neighbor
locates the closest node.

by following routing table links, then routes the additional distandégooot by following leaf set
links. This process is illustrated in Figure 2.2.

To join an existing DHT, a new nodeuses any existing node to find the root fpfrom
which it can retrieve its leaf set. Moreoverand the root fon likely share a long prefix, in which
case they will share many routing table entries. All other routing table entaiebefilled by doing
lookups on keys with the appropriate prefixes.

A simple implementation of the put function of a traditional hash table stores adtag-
pair with keyk the nodes pre¢k) and sucgk) fori € [1,¢'], where!’ < /, the leaf set radius. These
nodes are easily discovered by doing a lookugkaa find its root, and then asking the root for its
leaf set. Likewise, a simple implementation of get for a kejoes a lookup ok to find the root

and asks it for all the values it has stored urkler

2.2 Advantages of DHTs

With this simple description of Bamboo, we now enumerate the advantages of.DHT

First, we note that the system is completely decentralized. Any node is cayfgideforming a
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lookup, put, or get on any key, and to join the DHT a new node need owoly kifione other existing
node. The importance of this advantage is illustrated by the fact that mafigadigms in which
we wish to use a DHT, such as Coral and FeedTree, are by their natm@eately decentralized,
allowing for no central point of organization.

Second, as long &= O(logN), each node maintains only a logarithmic number of neigh-
bors in the network. This feature of DHTs is important because in ordestaxtithe failures of its
neighbors, a DHT node must periodically probe them for liveness; thevinidth usage of the DHT
thus scales linearly in the number of neighbors per node.

Third, the cost of lookups, puts, and gets scales logarithmically in the sthe oktwork.

To see that this is the case, note that we expect to negdNldggits to uniquely specify any given
node, and that at any given point, there i%g& chance that the current node is a suitable next hop
(i.e., it already has the required next digit). Since the cost of operatiomsglowly in the size of
the network, we can increase the capacity of the network by merely addifesn

Furthermore, looking back at Figure 2.1, we can see that for one r@ighlmode can
choose from roughly half the nodes in the network. For another neigftbthooses between a
quarter of the nodes, and so on. Proximity neighbor selection (PNS) isdheigele by which
a node chooses within each group to minimize the network latency betweenitsargghbors.
Dabek et al. [DLS04] have shown that using PNS the average latency of lookups can ke mad
constant in the size of the network.

Fourth, the network is very robust. Fbr> 1, the ring can survive the failure of any arbi-
trary £ — 1 nodes without a disconnection in the ring (i.e., the situation where some itbdehas
no live predecessors or successors). Moreover, as showniog 8tal. [SMK 01], if = O(logN)
and each node in the network fails is probability 1/2, with high probability noodisection will
occur. Likewise, any arbitrary/2— 1 nodes can fail without data loss, and if all nodes fail with
probability 1/2, no data will be lost with high probability so long &-=2 O(logN).

Finally, we note that the system is almost completely self-organizing and siifaimng.
When started, each node must somehow discover some other node thrdoigbito join the net-

work, but no other configuration information is necessary.

2.3 Limitations of DHTs

As described by Blake and Rodrigues [BR03], there are three faittardimit the per-

formance of a DHT: the total amount of data stored, the bandwidth availablctonode, and the
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turnover in the system’s membership. Note that the partitioning of the key spa@HT is entirely
a function of the nodes that comprise the system at any given time. Aswhehgver a new node
joins the system or an existing node fails, the partitioning changes, and dst®ewnoved so that
get requests continue to be routed to the nodes storing the desired data.

Let us consider the effects of new nodes joining and existing nodes teseparately. As
discussed above, DHTSs store data redundantly for fault tolerandewirg Blake and Rodrigues,
let us denote the factor of redundancy athe unique data stored in bytessthe total data stored
in bytes asS=rD, the size of the system &§ and the average amount of time each node is part of
the system in seconds &s

When an existing node leaves the system, it takes the data it has stored withst. Th
redundancy must be restored by copying some data onto the remaining @estall, the amount
of bandwidth used per node to handle such failureS/NT bytes per second (see [BRO3] for a
derivation). We note that this cost is not unique to DHTSs, but applieantoreplicated storage
system, and it implies that any such system must either have a relatively stableensbip, a great
deal of available bandwidth, or store only a small amount of data.

The cost of nodes joining, on the other hand, is unique to DHTs. BeasHube strict
partitioning that maps data items to nodes, DHTs also move data when a new insdbgasystem.
Overall, the amount of bandwidth used per node to handle such failurésoiS/ANT bytes per
second. This cost cannot be removed without changing the nature BHTebut as it is no larger
than the cost of nodes leaving, it does not fundamentally alter the rangevisbnments where
DHTs are applicable.

So far we have considered only the cases where nodes join the systima fiost time or
leave the system forever. From this analysis, it is clear that to store adargent of data in the
DHT, nodes must remain part of the system for a long time or the bandwidthaasinate. Under
many circumstances this seems like a reasonable requirement; in the Ceeab,sfm example,
each participating web site will presumably remain part of the system for montlemger. It is
unreasonable, however, to expect each of these sites to remain costinaaailable for the entirety
of that time. Machines may crash, for example, or they may be rebootedfadtarstallation of
security patches.

To their peers, however, such temporary failures are indistinguishedite germanent
ones, and a naive DHT implementation may trigger recovery mechanisms tanaéoothem. If
a temporary failure is indeed short lived, the bandwidth used during tmsaassary recovery is

wasted. In Section 4.6.3 we discuss mechanisms that can be used to largelatelithécost of
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these temporary failures.

In summary, DHTs are suitable for two important domains. First, a DHT is apiate
for providing a small amount of data with a high degree of availability acrasest af peers with
dynamic membership. Examples of such applications include all those whdfd asprimarily
used as an index, such as Coral, or where it is used primarily for comntionicas in FeedTree.
Second, a DHT can also be used to provide highly available access tealktayrepository with
low maintenance cost, but only if the membership of such a system is relatigblg. sOpenDHT,
OverCite [SCLF05], and UsenetDHT [SDR04] are all good examples of this latter use &f& D

2.4 Related work

We now provide an overview of related work in this area in order to giveeod to this
thesis. Here we focus on the larger issues that distinguish our workdtbens’. We will cover
more detailed differences where appropriate throughout the rest efidhis

2.4.1 DHT Geometries

The pattern of neighbor links in the overlay network of a DHT is commonly catked
geometnfGGG'03]. In particular, the term geometry is used to speak specifically abougréyi
itself, rather than the graph maintenance or routing algorithms used by theB2idduse DHTs with
different geometries can use the same routing algorithm (e.g., greedsessag the key space),
geometry is a useful first metric with which to distinguish one DHT from another

The Original DHT Geometries The first group of DHT geometries that were proposed
all provided the same rough cost-performance tradeoff. Chord [SDAK Pastry [RDO1],
Tapestry [ZHS 04], and Kademlia [MMO02] all use a graph where each nodédtxyN) neighbors
and a lookup operation tak€XlogN) hops. CAN [RFH 01] uses a graph where each node thas
neighbors and a lookup tak€dN/9) hops; ford = logN, a CAN node ha©(logN) neighbors
and takeO(logN) hops to perform a lookup. Bamboo provides the same tradeoff as thekg, DH
as it uses the Pastry geometry. Of these original DHTSs, the Chord, Rasdrilademlia geometries
have found wide use in widely deployed systems [$SAZ, SDR04, M 03, RGK" 05, edo, bit].

Constant-State Geometries The next group of DHT geometries fell on different sides of this
tradeoff. First, by using a geometry based on a de Bruijin graph, Ka&saod Karger pre-
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sented a DHT called Koorde that maintains a constant number of neighéronege yet still per-
forms lookups in @(logN) hops [KK03]. Nonetheless, they showed that for fault-tolerance, it is
still desirable that each node ha@¢logN) neighbors. In this case, Koorde performs lookups in
O(logN/loglogN) hops.

While Koorde is thus capable of performing lookups in less hops than theargroup of
DHTs, it has very little choice in neighbors, preventing it from selecting iighimrs for proximity.
In contrast, the original DHTs (including Bamboo) use PNS to performupskntime constant in
the size of the network (though still using a logarithmic number of hops) [[U4$ While they are
thus interesting from a theoretical point of view, we do not expect to sey DETs based on de
Bruijin graphs used in practice.

Constant-Hop-Count Geometries The other direction that DHT geometries have moved is to-
wards using a larger number of neighbors to perform lookups in a nuafteps constant in the
size of the system. DHTSs in this group include Kelips [GR®I3] and the one-hop design of Gupta,
Liskov, and Rodrigues [GLR04] (which we will subsequently call “OgHfor brevity).

Kelips divides the membership of a DHT inko= O(,/n) affinity groups Each node
maintains state about all the nodes in its own affinity group, as well as statié af®wv nodes in
each other affinity group. Lookups can thus be performed in two hopg-tathe correct affinity
group and one within that group. To manage this larger number of neigleffaiently, Kelips uses
epidemic propagation both within and between groups. When this state bestaleeKelips may
take more than two hops to resolve a lookup, but simulations show that thisarabe limited. The
designers of Kelips argue that it should scale to around 100,000 nodes.

The OneHop algorithm goes even further than Kelips by maintaining state abery
node in the network at every other node. The trick, of course, is howojmagate that information
efficiently. Like Kelips, the OneHop algorithm uses epidemic propagation aflmeeship changes.
Compared to Kelips, however, its propagation graph is more structured.OfleHop system is
divided intok = O(,/n) slices, which are roughly equivalent to Kelips’ affinity groups. Eacteslic
has aslice leader and communication between slices occurs only between leaders. Eacis slice
further subdivided into several units, each of which hasialeader and communication between
slice leaders and the nodes in the slice occurs only through unit leadiengaons show that the
OneHop design uses reasonable bandwidth, although the bandwiditeneeputs for slice leaders
indicate that they should be chosen carefully. The OneHop authors raiserp a two-hop design
using the same geometry that they believe will scale to a few million nodes.
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Despite their apparent promise, we are not aware of any deployedsyttat use constant-

hop DHTs such as Kelips or the OneHop algorithm.

A Variable-State Geometry The DHT geometries above present a tradeoff between the band-
width used in maintaining neighbor links versus the number of hops requigerform a lookup.

In situations where bandwidth is scarce, the constant-state geometriesrarattractive. In con-
trast, constant-hop geometries are preferred in situations where bandadple. A natural ques-
tion thus arises as to whether it is possible to design a DHT geometry that &al#pesbandwidth
available to deliver the fewest hops possible in any situation. Accordi8MKO05] is a proposed
design for a variable-state geometry of this form. While it has only been sirduiatéate, early

results are promising.

2.4.2 Lookup Practicalities

The geometry of a DHT is only one component of its performance in prattiegputing
algorithm used is often just as important. There are two practical issuesakatrouting algorithms
vital: the computation of timeouts on routing messages, and the non-unifotrofdesps in the

network.

Timeout calculation In a any large distributed system, the sheer number of nodes ensures that
at any given time some nodes will be down, others will be in the processashiciy, and still
others will just be slow (due to temporary load, faulty components, etc.Yh&umore, studies of
existing peer-to-peer systems show even higher rates of failure thangthidarly sized distributed
systems [SGG02, CLL02, SW02, BSV03, GO$3]. If failures are common, and detecting and
routing around a failed node takes several seconds, the cost oéfadan easily come to dominate
the cost of a lookup.

In Chapter 3 we describe our work for handling failures along the logiaip in DHTSs.
Our primary observation is that through continuous, active probing ofeiighivors in the graph,
a DHT node can compute good values for the time it expects each neighbdettmtprocess a
lookup message. Messages that are not acknowledged within this parioguckly be resent
along an alternate path.

In practice, to adequately guard against false positives, message tirgeoatslly need
to be some small multiple of average round-trip time, and even a single timeouddaigaificantly

to query latency. One approach to limiting the effect of timeouts on end-to-ekdpdatency is to
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Figure 2.3:lterative lookup.An iterative lookup involves the same nodes as a recursive one, but
instead of forwarding the message, each intermediate node respondsdnitbe with the address
of the next hop.

parallelize the lookup; by routing along several paths simultaneously, adaHTise extra resources
to increase the number of timeouts that must occur in order to stall a lookup.

A simple way to parallelize lookups is to issue each lookup from multiple soudesia
the DHT. As discussed in Chapter 7, the effect of such parallelizatioramatic in our OpenDHT
deployment on PlanetLab.

The lookup process we have described so far (and illustrated in FigRiresZommonly
calledrecursive lookup An alternate lookup algorithm that is useful for parallelization is called
iterative lookup As illustrated in Figure 2.3, an iterative lookup contacts the same nodes in the
DHT as a recursive lookup for the same key, but the lookup proceseiste at all points by the
source node; the lookup is not routed through the DHT. Since one nadetiarge of the lookup at
all times, it is easy to parallelize: the source node just keeps several &f@Gsat any time. This
approach to lookup was first proposed in Kademlia, and we show itdieéfieess in Chapter 7.

Although parallel iterative lookup can limit the effect of timeouts on the looksiaa
whole, it introduces a new problem: since the nodes contacted in duringdkepl@rocess are
often not the immediate neighbors of the source node, it is not immediately cdeaiolcompute
timeout values for messages sent to them. Dabek et al. [DEBshowed that network coordinates
computed using the Vivaldi [CDK0O3b] algorithm are appropriate for this purpose. In Chapter 3
we compare the quality of timeouts computed using Vivaldi versus those cothnipyitdirect mea-
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surement.

Lookup Hop-Count vs. Latency Our earlier categorization of DHT geometries above focused
primarily on the number dfiopsrequired to perform a lookup. From the point of a user, however, a
more natural metric is the end-to-etadencyof a lookup. In other words, it is not just the number
of hops that should be considered, but also the latency of each hop.

By the metric of end-to-end latency, it is not immediately clear that greedy miuiin
the identifier space is optimal. DHash [DL&4] uses a variant of Chord routing where each node
picks its next hop by computing the expected latency to complete a lookup theaady neighbor
and chooses the neighbor that minimized this latency. This estimation is basee lateticy to
the neighbor itself, plus the average latency in the overlay times the expeotdzbenof hops that
would remain after contacting that neighbor. The number of hops remainesgilsated based on
the observed density of the nodes in the identifier space.

Gummadi et al. [GGGO03] explored a technique the callguoximity route selection
(PRS), whereby a lookup query was routed at each hop to the neighisast in network latency
that made progress in the identifier space. The authors show that PRSfoutys greedy routing
in a simulation of Chord using a realistic network latency distribution, but theydicccount for
the additional cost of processing at each node. As the PRS route is likelyotoe more hops than
the greedy one, this per-hop processing cost can be significant he@ayments.

In Chapter 7, we present the results of experiments that explore theofdRiRS in the
OpenDHT deployment on PlanetLab. We show that while PRS does indeeid@isome benefit,
it is not optimal. On PlanetLab, per-hop processing costs are non-négliga hybrid of greedy
and proximity-based routing works best. This hybrid routes greedily wipeaet to low-latency

neighbors, but weights proximity more heavily for high-latency ones.

2.4.3 DHT Storage

As discussed in the introduction, while many DHT applications use the relagvity
itive lookup interface, others want a higher-level interface to the DHTe @&ample of such an
interface is the traditional put/get interface offered by hash tables. Thernmeptation of put/get
atop lookup is conceptually simple: to put, a node looks up the root of a kiyseamds it a put
message; to get, it looks up the root and sends it a get message. As with |bokvever, the diffi-

culty of implementing put/get in practice is in handling failures. The main additiamadtionality
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of put/get over lookup is thus the fault-tolerant storage of key-value pas other DHT interfaces
(e.g., DOLR [ZHS 04,DzD"03]) also require storage within the DHT, we refer to the problem in
general as the storage problem. There are two main approaches in theriéoshandling it.

The Soft-State Approach The first approach, which we will call theoft-stateapproach, places
the responsibility for maintaining the availability of each key-value pair outditteedDHT. To keep
its key-value pairs available, a client of a soft-state DHT must re-put theford all of the nodes
onto which they were originally replicated fail. Moreover, it must also retpem when enough
new nodes join the DHT such that it no longer maps the key onto any of thesmvaldere replicas
were originally stored.

Despite these complications, the soft-state approach is very easy to implertinenDiA T,
and it is therefore attractive in applications where the burden on clients i $foaexample, in
i3 [SAZ"02], a DHT is used to forward packets to clients outside the DHT. To enaibl&utiction-
ality, a client puts its IP address into the DHT under a particular key. OtheitglEss messages to
the DHT with this key, and the DHT forwards them to whatever IP addressiiertly stored under
that key. Because each client only has one IP address, it can thgh@ddress frequently at low
cost. Furthermore, the DHT can garbage collect old values by expirjngadresses not put in the
last minute or so.

In other cases, the soft-state approach is less attractive. For exanGjealanode may
have a very large web cache, and it would take considerable costptat esch of the entries in
its cache index into the DHT every minute. Alternatively, it could keep tracktoEh DHT nodes
stored its values and monitor them, but this approach still scales at beshimetire size of the
DHT or the number of values, whichever is larger.

The Managed Approach A more efficient solution in such cases is to have the replicas for any
one value monitor each other, an approach we calhtheagedapproach. In this approach, the
DHT is responsibly for storing data redundantly and for restoring trnéancy after failures.
By the nature of the DHT's partitioning function, nodes whose identifiegsagjacent in the key
space are replicas for many of the same values. This arrangememtprése possibility of a
maintenance protocol whose total bandwidth usage is proportional to thbemwf nodes in the
system, a marked improvement from common implementations of the soft-stataeppwhich
use bandwidth proportional to the number of values stored.

The managed approach to DHT storage was first proposed by both tdpe@tve File
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System [DKK"01] and PAST [DRO01], two early DHT storage systems, but neither ptedean
efficient solution for implementing it.

In Chapter 4 we present an algorithm for storage management in whibmede uses
only a constant amount of bandwidth per unit time whem adiplicas for a set of values are in sync,
and it uses at worst a cost 6f(r logn) to find a missing value on one of the nodes in such a set,
wheren is the total number of values replicated. Moreover, in many cases it discoany such
inconsistencies at once, amortizing tér logn) cost across the reconciliation of many replicas.
This algorithm was developed concurrently with, but independently dfjril@ates’ thesis [Cat03];
we discuss the differences in detail in Chapter 4.

An interesting variation on the managed approach is used in the BeehieendjgS04b],
which replicates data very widely in order to reduce get latency. Usingdrébditson of the popular-
ity of items, Beehive replicates each item such that the average numbgyopadormed per getin
the system is below 1. This approach requires a great deal of replicatierexample in [RS04b]
suggests a replication factor of 37. The cost of this replication is boromgtby the storage re-
sources of the system, but also by the network resources, as eaate tpa replicated item must
be propagated to each replica. Nevertheless, the resulting improvemenigntylmay be justified

in a system storing a small number of items that change relatively rarely.

2.4.4 Sharing A DHT Between Applications

As discussed in the introduction, there are two senses in which a DHT cahaled:

among applications and among clients. We discuss sharing between appdidiation

Facilitating bootstrap As discussed in the introduction, by using the same DHT for all feeds,
the FeedTree application need only bootstrap itself once; knowing a ctieiat $pecific feed is
sufficient to find clients for any other feed. This bootstrap problem estém DHTSs in general: in
order to join a particular DHT, a new node must know of at least one exiatidg in that DHT.
To discover such a node, some form of lookup service is needed;alabte lookup is exactly the
service provided by DHTSs.

A common solution to the bootstrap problem uses the DNS system to locate existing
nodes. In this solution, a small set of DNS servers are registered aanteservers for a domain.
These same servers monitor the live nodes in the DHT, and they use this nmgnibdormation to

return only live nodes’ IP addresses as address records in ssppBbNS queries. This technique
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is used in Coral, for example. Unfortunately, most kernel DNS clients wijl aocess remote DNS
servers on port 53, limiting the number of DNS servers that can run oaradlestbed such as
PlanetLab. It is thus difficult for every DHT-based application to solvebth@strap problem using
DNS.

Another approach to solving the bootstrap problem is the idea of sharimgle ®HT
between all DHT applications. The earliest such example of which we aaredsithe “One Ring”
proposal of Castro et al. [CDKRO2]. In this proposal, each node i& 3 both a member of its
application-specific DHBRnda single, global DHT. This global DHT is used to provide a number of
services, including a file store, multicast, and a bootstrap service for gtieatjpn-specific DHTSs.
Essentially, the IP addresses of several bootstrap nodes are stolerdauservice-specific key for
each application DHT, and new nodes lookup these bootstrap nodes tageenaing.

The One Ring approach eliminates the need to use DNS for each applicadioifies
DHT, but it does not balance the bootstrapping load well. Only the smallfseides registered
with the global DHT are available as bootstrap hosts, and the node (in thal giod) that stores
this list for each application is saddled with all of the load for looking up thi®Ekbotstrap nodes.
While caching can be used to eliminate some of this load, it will also reduce ttenfess of the
information returned.

Two algorithms designed to address the limitations of the One Ring approaetbbex
proposed: Karger and Ruhl proposed Diminished Chord [KRO4] vamg@roposed Recursive Dis-
tributed Rendezvous (ReDIR) [KRRS04].

Diminished Chord is a variant of the Chord protocol that allows severatpplications
to share a single Chord ring. In this design, the lookup function is parazeddry application; a
lookup for keyk in applicationa finds the node in the ring running applicatiathat most immedi-
ately succeedk in the identifier space. As with the standard Chord algorithm, these lookups tak
only O(logN) hops in a global network dfl nodes, but unlike the standard algorithm, the graph for
Diminished Chord cannot be built using proximity neighbor selection. Intip@ahen, we expect
lookups in Diminished Chord to be slower than those in standard Chord ulifig P

In contrast to Diminished Chord, the ReDIR algorithm is a client-side libraryubas
only the put and get functions of any DHT implementation to provide an applicapecific lookup
function. In the worst case, this lookup requi@dogN) gets to find the successor of a given key,
but on average it requires only a constant number of gets to do so. the®me gets can also be
optimized using PNS, we expect ReDIR to be at least as fast as Diminished @hpractice.

ReDiR is discussed in more detail in Chapter 5.
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In comparison to the One Ring proposal, both Diminished Chord and ReDé&Rdpine
bootstrapping load for each application across all of the nodes in thel gbg and all of the
nodes in the application. As such, once a node can access the glob#hehgotstrapping process

for any individual application is just as scalable as the remainder of the DHT

The DHT as a service Techniques like those of the One Ring, Diminished Chord, or ReDiR make
deploying a new DHT application easier by solving the bootstrap problem.thigleges, a new DHT
application must still deploy some nodes; if there is not at least one node @tlamy time, there
will be no one for new nodes to bootstrap through. While it seems someidi@atlous that there
could exist an interesting application that both needed the scalability of a DHSimultaneously
could experience periods of without any active members, practicalsissake the idea not as far
fetched as it sounds. For example, what if all the active members of éinatm are behind NATS,
and thus unable to contact each other?

To address this problem, we take an even more radical approach thandésrséed
above: by running a DHT as an Interrssrvice we make it possible to build DHT-based applica-
tions without deploying any DHT nodes at all. We discuss the resulting systdlagd OpenDHT,
in detail in Chapter 5.

2.4.5 Sharing A DHT Between Clients

In sharing a DHT among clients, the primary difficulty is that of resource afion. A
faulty or malicious client, for example, may perform enough puts to fill the BHTdrage resources
or enough gets to overwhelm the bandwidth available to some nodes in thelXHi§. situation
is not prevented, other clients will experience reduced service. White #re known techniques
for allocating computation and network resources (e.g. [DKS89, DCRIYN, the allocation of
storage is less well understood.

One early approach to storage allocation in a shared system was intoducke
Palimpsest system [RHO3]. Palimpsest uses a novel revolving-doarigeehin which, when the
disk is full, new stores push out the old. To keep their data in the system, dieeptd frequently
enough so that it is never flushed; the required re-put rate deperttie dotal offered load on that
storage node. Palimpsest uses per-put charging, which in this modshbs@n elegantly simple
form of congestion pricing to provide fairness between users (thosegviipay more get moré).

2Referring back to Section 2.4.3, we note that Palimpsest presentgbreason for using soft-state storage manage-
mentin a DHT.
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While we agree with the basic premise that public storage facilities should oeiipr
unboundedly persistent storage, we are reluctant to require clients tibomibre current offered
load in order to know how often to re-put their data. This adaptive monitgiegents the same
complications as the soft-state model of DHT storage discussed aboveowéorPalimpsest relies
on charging to enforce some degree of fairness; since OpenDHTretyrdeployed on PlanetLab,
an environment where such charging is both impractical and impolitic, we diantey to achieve
fairness without an explicit economic incentive. Our solution to this challecgjéed Fair Space-
Time (FST), is discussed in Chapter 5.

Another system that is exploring the notion of shared storage in the wideisuthe
Internet Backplane Protocol (IBP) [BMPO3]. While this system is natellaon a DHT, our FST
algorithm is applicable to it as well. Furthermore, we hope that the existeribe 8P system will
encourage the development of alternate storage allocation algorithms tlcanvilecorporate into
OpenDHT.

2.4.6 Load Balancing

To close this section, we discuss one additional area of work in the DHJespéa is
well known that when the identifiers of nodes in a DHT are chosen unifoatntgndom, the load
imbalance between nodes can®@ogN) [SMKT01]. In other words, some nodes in the DHT will
be responsible for a logarithmic factor more of the key space than othees iEclients balance
their key choices around the ring, then, some nodes in the DHT will see nigicbrtstorage and
routing load than others. In the case where clients of the DHT do not leathat key choices, the
problem is only exacerbated.

Load balancingn a DHT is the process of trying to modify the DHT so that each node
is assigned either an equal share of the key space, the data storezlrautthg load. There are a
number of algorithms in this space, and they rely on a variety of techniquéws.aRd Karger’s al-
gorithm balances load by changing nodes’ identifiers to more equally gtekey space or storage
load [RK04]. PAST and the algorithm of Suri et al. [STZ04] balance lopadnoving large objects
to underutilized nodes. Godfrey et al. [GL®4] balance load by assigning severatual nodesto
each physical node in the DHT, as first proposed in Chord [SPIK.

Since the amount of data stored by a node influences the bandwidth itrudasaamain-
tenance, and since bandwidth is the limiting factor in the growth many DHTs get@sabften the
most important resource to balance. Unfortunately, load balancing itgeifes bandwidth (as data
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is moved), and so it cannot fully eliminate the problem. As we discuss in Chiapter are thus in

favor of encouraging application behavior that balances the storageatishe time it is allocated.
Our FST algorithm, for example, rewards clients that can choose keysts@iace their values on
underutilized nodes. Clients thus have a selfish incentive to target lightlgdoaades, potentially

ameliorating the need for later load balancing by the DHT itself.

2.5 Summary

In this chapter we have presented an introduction to the field of DHT m@sediscussed
which portions of that field are covered in this thesis, and distinguishedoik from the related
work of others. In subsequent chapters we will cover each of auriboitions in detail. To review,
these include DHT lookup and storage in Chapters 3 and 4, the DHT agieeserChapter 5, and

several practical issues we have discovered in building and deployan Chapters 6 and 7.
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Chapter 3

Lookup

As discussed in the introduction, the most basic functionality of a DHIba&kup—
the mapping of keys onto nodes in the DHT. This functionality is the lowest-ieteiface in
the proposed Common API for DHTs [DZD3], and it is the basic functionality on which the
put/get [DKK"01,Cat03,RGK05], multicast [ZZ301,RKCD01,RHKS01], and DOLR [ZHS4]
interfaces are built. It is thus of utmost importance that the lookup functiortaitpbust in all of
the scenarios in which DHTSs are to be deployed.

Early work on DHTSs focused on large-scale failures. For examplerakpapers have
shown that a DHT with a logarithmic number of neighbors per node canveuevien when every
node in the system fails with probability 1/2 [SMIR1, KK03].

At the same time, research into existing (but not necessarily DHT-baset@peer
systems has shown that these networks are plagued not by largeisuatarseous failures, but
instead suffer from a steady and continuous process of nodes jointhdgaving the system, a
process we call churn. One measurement of churn, the median time betverra node joins the
network and when it next departs, has been observed to be as longhasirato as short as a few
minutes in deployed systems [BSV03, CLL02, GG, SGGO02].

In this chapter we explore the performance of DHT lookup in such dynamica-
ments. DHTs may be better able to locate rare files than existing unstructueetbfmeer net-
works [LHSHO04]. Moreover, it is not hard to imagine that other propogses for DHTs will
show similar churn rates to file-sharing networks—application-level multmiastiow-budget ra-
dio stream, for example. In spite of this promise, we show that high chursesaa variety of
negative effects on two mature DHT implementations we tested. Both systemg drduibatic la-

tency growth when subjected to increasing churn, and in one implementatioettherk eventually
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partitions, causing subsequent lookups to return inconsistent reshigemainder of this chapter
is dedicated to determining whether a DHT can be built such that it continuessftrq well as
churn rates increase.

In fact, we demonstrate that DHTs can perform lookups at high chtgs,rand we iden-
tify and explore several factors that affect the behavior of DHTseurmthurn. The three most

important factors we identify are:
e reactive versus periodic recovery from failures
e calculation of message timeouts during lookups
e choice of nearby over distant neighbors

By reactive recoverywe mean the strategy whereby a DHT node tries to find a replacement neigh-
bor immediately upon noticing that an existing one has failed. We show that badewidth-
limited conditions, reactive recovery can lead to a positive feedback tyateoverloads the net-
work, causing lookups to have high latency or to return inconsistenttsedn contrast, a DHT
node may recover from neighbor failure at a fixed, periodic rate. Vi ghat this strategy im-
proves performance under churn by allowing the system to avoid pofatiadback cycles.

The manner in which a DHT chooses timeout values during lookups can sdatlyg
affect its performance under churn. If a node performing a lookuygse message to a node
that has left the network, it must eventually timeout the request and try emo#ighbor. We
demonstrate that such timeouts are a significant component of lookup latedey churn, and we
explore several methods of computing good timeout values, including votgatinate schemes
as used in DHash [DLS04].

Finally, we consideproximity neighbor selectiofPNS), where a DHT node with a choice
of neighbors tries to select those that are nearest to itself in network yatéfeccompare several
algorithms for discovering nearby neighbors—including algorithms similar teethsed in the
Chord, Pastry, and Tapestry DHTs—to show the tradeoffs they offerden latency reduction and
added bandwidth.

In performing this study, we build the Bamboo DHT [RGRKO03], which was initially
based on Pastry, as described in Chapter 2. Furthermore, we augBantbdo such that it can be
configured to use any of the design choices described above. Asvgeician examine each design

decision independently of the others. Moreover, we examine the periocetd each configuration
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by running it on a large cluster with an emulated wide-area network. This natgpdis partic-
ularly important with regard to the choice of reactive versus periodicvesgaas described above.
Existing studies of churn in DHTs (e.g., [CCR03a, CIKB, LSG 04, MCRO03]) have used simu-
lations that—unlike our emulated network—did not model the effects of netgyoekiing, cross
traffic, or message loss. In our experience, these effects are priataoys contributing to DHTS’
inability to perform lookups quickly and correctly under churn. Morgpegr measurements are
conducted on an isolated network, where the only sources of queuigp traffic, and loss are
the DHTs themselves; in the presence of heavy background trafficxmexethat such network
realities will exacerbate the ability of DHTs to handle even lower levels ofrchur

Of course, this study has limitations. Building and testing a complete DHT implementa-
tion on an emulated network is a major effort. Consequently, we have limitedleesgo studying
a single DHT on a single network topology using a relatively simple churn médeihermore, we
have not yet studied the effects of some implementation decisions that migtttthté performance
of lookups under churn, including the use of alternate routing table neiglds in Kademlia and
Tapestry, or the use of iterative versus recursive routiNgvertheless, the Bamboo DHT described
here has since been used as the base system for OpenDHT (destidied chapters), which has
been running successfully on PlanetLab for over a year now.

The rest of this chapter is structured as follows: in Section 3.1, we rewisstireg studies
of churn in deployed file-sharing networks, describe the way we mawél shurn in our emulated
network, and quantify the performance of mature DHT implementations undbrchurn. In Sec-
tion 3.3, we study each of the factors listed above in isolation, and descwbBamboo uses these
techniques. In Section 3.4, we survey related work, and in Section 3.%sauesd important future

work. We conclude in Section 3.6.

3.1 The Problem of Churn

There have been very few large-scale, DHT-based application deplug to date, and
so it is hard to derive good requirements on churn-resilience. Howe2€ file-sharing networks
provide a useful starting point. These systems provide a simple indexwigeséar locating files on
those peer nodes currently connected to the network, a function thaeaaaturally mapped onto
a DHT-based mechanism. For example, the Overnet file-sharing sysésnthgsKademlia DHT to

Iwe have studied the differences between iterative and recursivegauiinr PlanetLab deployment (see Chapter 7),
but not under the heavy churn rates used in this chapter.
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Figure 3.1: Metrics of churn. With respect to lookup, theession timesf DHT nodes are more
relevant than theilifetimes

store such an index. While some DHT applications (such as file storage BSi[DEK " 01]) might
require greater client availability, others may show similar churn rates tdféersy networks (such
as end-system multicast or a rendezvous service for instant messa@ggiich, we believe that
DHTs should at least handle the churn rates observed in today’s ffargmetworks. To that end,
in this section we survey existing studies of churn in deployed file-shaghganks, describe the
way we model such churn in our emulated network, and quantify the peaftge of mature DHT
implementations under such churn.

Studies of existing file-sharing systems mainly use two metrics of churn (seeeRdL).

A node’ssession timés the elapsed time between when it joins the network and when it subse-
guently leaves. In contrast, a nodéfstimeis the time between when it enters the network for the
first time and when it leaves the network permanently. The sum of a nossgs times divided

by its lifetime is often called itavailability. One representative study [BSV03] observed median
session times on the order of tens of minutes, median lifetimes on the orderfata/median
availability of around 30%.

With respect to the lookup functionality of a DHT, we argue that session timeeis th
most important metric. Even temporary loss of a routing neighbor weakensothectness and
performance guarantees of a DHT, and unavailable neighbors rachamie’s effective connectivity,
forcing it to choose suboptimal routes and increasing the destructivaet@btef future failures.
Since nodes are often unavailable for long periods, remembering neggtitad have failed is of

little value in performing lookups$.
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First Author Systems Observed Session Time
Saroiu [SGGO02] Gnutella, Napster, 50% < 60 min.
Chu [CLLO2] Gnutella, Napster] 31%< 10 min.
Sen [SW02] FastTrack 50% < 1 min.
Bhagwan [BSV03] Overnet 50% < 60 min.
Gummadi [GDS 03] Kazaa 50%< 2.4 min.

Table 3.1:0bserved session times in various peer-to-peer sysfBnesmedian session time ranges
from an hour to a minute.

3.1.1 Empirical studies

Here we briefly survey five studies of existing peer-to-peer systemesstlidies’ findings
are summarized in Table 3.1.

Saroiu, Gummadi, and Gribble [SGG02] presented the earliest study veefdnand of
session times in peer-to-peer systems. Using active probing, they foeinakttiian session time in
both Napster and Gnutella to be around 60 minutes. Another active studgpstét and Gnutella
by Chu, Labonte, and Levine [CLLOZ2] found that 31% of observestioms were shorter than 10
minutes, and less than 5% were longer than 60 minutes. On the other handb#ieeyed a small
fraction of sessions (less than 0.01%) lasting thousands of minutes at a time.

Sen and Wang [SW02] used passive monitoring to observe FastTriokusang routers
in an ISP backbone. To compute session length, they included all trafithas 30 minutes apart
from the same IP address, and found that 60% of nodes had a toiahs#s® of under 10 minutes
daily.

Bhagwan, Savage, and Voelker [BSV03] performed an active stiithg ®@vernet system.
The choice is significant since nodes in Overnet are uniquely identifiedimes that persist across
sessions. As such, these names are more suitable for many metrics thdrels3ad which vary over
time due to DHCP, firewalls, etc. While this distinction is important for measuring fitetimes,
changing IP address involves leaving and rejoining a network, so wevéelie previous studies’
session time results are still valid.

Since the Overnet study did not include session times, we re-analyzeddkeeto extract
them. This data contains the results of active probes for 2,400 distinch€wveosts every 20
minutes over a week. Marking the start of a session as the transition frost &d¢ing unreachable

to being reachable, or as the change from one IP address to anattieyywd a median session time

2While remembering neighbors is useful for applications like storage @BRQiIr point here is that it is of little value
for lookupoperations.
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of 60 minutes, plus or minus the 20 minute probe period.

A study of Kazaa by Gummadi et al. [GD83] used passive measurement techniques
to estimate session times as the length of continuous periods during which avaedsctively
retrieving files. They found a median session length of only 2.4 minutes, &@dhapercentile
session length of 28.25 minutes.

Looking at the summary of observed session times in Table 3.1, we concladé&th
replace existing systems, a DHT must be robust to session times from aslandaur to as short
as a minute on median. At first sight, the lower end of this range seems sugpasd may be
due to methodological problems with the studies in question or malfunctioning ey#tem under
observation. However, it is easy to image a user joining the network, dadimig a single file (or
failing to find it), and leaving, making session times of a few minutes at leastiplaus

We further note that neither the studies we have cited nor our analysis taleegount the
possibility that sessions are cut short due to network failures, or thdustrDHT would experience
longer session times due to its own resilience. Nevertheless, we feel thégrmeed requirements

are a useful starting point for DHT designers.

3.1.2 Experimental Methodology

Our platform for measuring DHT performance under churn is a clus#0 ¢8M xSeries
PCs, each with Dual 1GHz Pentium Il processors and 1.5GB RAM,exted by Gigabit Ethernet,
and running either Debian GNU/Linux or FreeBSD. We use ModelNet [VWO2] to impose wide-
area delay and bandwidth restrictions, and the Inet topology genena¢drtd create a 10,000-
node wide-area AS-level network with 500 client nodes connected taligffct stubs by 1 Mbps
links. To increase the scale of the experiments without overburdeningaffaeity of ModelNet
(by running more client nodes), each client node runs two DHT instafares total of 1,000 DHT
nodes.

Our control software uses a set of wrappers that communicate locally adth BHT
instance to send requests and record responses. Running 1,000 &&tices on this cluster (12.5
nodes/CPU) produces CPU loads below one, except during the highast rates. ldeally, we
would measure larger networks, but 1,000-node systems already deat®msoblems that will
surely affect larger ones.

In an experiment, we first bring up a network of 1,000 nodes, one dvBrseconds, each
with a randomly assigned gateway node to distribute the load of bootstrappirmpmers. We then
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churn nodes until the system performance levels out; this phase normadly2x80 minutes but
can take an hour or more. Node deaths are timed by a Poisson process #refefore uncorrelated
and bursty. A new node is started each time one is killed, maintaining the totalrketize at 1,000.
This model of churn is similar to that described by Liben-Nowell et al. [LNRBK In a Poisson
process, an event ralecorresponds to a median inter-event period of/l.2For each event we
select a node to die uniformly at random, so each node’s session time @exkpe sparN events,
whereN is the network size. Therefore a churn ratd aorresponds to a median node session time
of

tmed= NIN2/A.

For example, a 1,000-node network churning with median session times ¢foomevill see one
node arrive (and one leave) every 5.2 seconds. In our experinveatased churn rates ranging
from 8 joins/departures per second to 4 per minute, equal to median sesgarirom 1.4 minutes
to 3 hours.

During an experiment, each live node continually performs lookups faitifters chosen
uniformly at random, timed by a Poisson process with rate 0.1/second, &ygaegate system load
of 100 lookups/second. Each lookup is simultaneously performed by tlesnand we report both
whether it completes and whether it is consistent with the others for the samdflktbere is a
majority among the ten results for a given key, all nodes in the majority are sa@kta consistent
result, and all others are considered inconsistent. If there is no majoritypddls are said to see
inconsistent results. This metric of consistency is more strict than that eelgbiyr some DHT
applications. However, both MIT's Chord implementation and our Bamboo impitatien show
at least 99.9% consistency under 47-minute median session times [RGRKUB{oes not seem
unreasonable.

There are two ways in which lookups fail in our tests. First, we do nooperiend-to-
end retries, so a lookup may fail to complete if a node in the middle of the lookihplgmaes the
network before forwarding the lookup request to the next node. \&ergbd this behavior primarily
in FreePastry as described below. Second, a lookup may return inemmsesults. Such failures
occur either because a node is not aware of the correct node tardbitrealookup to, or because it
erroneously believes the correct node has left the network (bechusagestion or poorly chosen
timeouts). All DHT implementations we have tested show some inconsistenciesamaa, but
carefully chosen timeouts and judicious bandwidth usage can minimize them.
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Figure 3.2:FreePastry under churnThe percentage of successful lookups in a 1,000-node Free-
Pastry network under churn. Session times for each 30-minute chuod pee indicated by arrows,
and each churn period is separated from the next by 10 minutes of no dthe churn rate doubles
with each successive period.

3.1.3 Existing DHTs

In this section we report the results of testing two mature DHT implementationg unde
churn. Our intent here is not to place a definitive bound on the perforenaineither implementa-
tion. Rather, itis to motivate our work by demonstrating that handling churidiidds a non-trivial
problem. While we have discussed these experiments extensively with tteesaotboth systems,
it is still possible that alternative configurations could have improved thefioeance. Moreover,
both systems have seen subsequent development, and newer versiah®manproved resilience

under churn.

FreePastry We tested FreePastry 1.3, the Rice University implementation of Pastry Fig].
ure 3.2 shows one effect of churn on a network of 1,000 FreePastigsnwhich we ran using the
default 24-node leaf sets and logarithm base of 16. We do not ernfoozémity between a new
node and its gateway, as suggested for best FreePastry perforrttascecision only effects the
proximity of a node’s neighbors, not the efficiency of its routing.

Itis clear from Figure 3.2 that while successful lookups are mostly ciemgjd-reePastry
fails to complete a majority of lookup requests under heavy churn. A likellaegtion for this fail-
ure is that nodes wait so long on lookup requests to time out that they friégjlesave the network

with several requests still in their queues. This behavior is probablyedsaied by FreePastry’s
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Figure 3.3:Chord under churnShown is the mean latency of lookups in a 1,000-node MIT Chord
network under increasing levels of churn. Churn increases to the left.

use of Java RMI over TCP as its message transport and the way thaBtgenodes handle the
loss of their neighbors. We present evidence to support these ideastiars3.3.1.

Also note that FreePastry generally recovers well between churrdgedace again cor-
rectly completing all lookups. The difficulty with real systems is that there isucb guiet period;

the network is in a continual state of churn.

MIT Chord We tested MIT’s Chord implementation [mit] using a CVS snapshot from 8/4/2003
with the default 10-node successor lists and with the location cache digablag the F option),
since the cache causes poor performance under churn.

In contrast to FreePastry, almost all lookups in a Chord network compteteedurn
consistent results. Instead, Chord’s shortcoming under churn is inpoekency, as shown in Fig-
ure 3.3, which shows the result of running Chord under the same wdrkloahown in Figure 3.2,
but where we have averaged the lookup latency over each churn p8tiodn for comparison are
two lines representing Bamboo’s performance in the same test, with and witieairmhfy neighbor
selection (PNS). Under all churn rates, Bamboo’s bandwidth usage lglglimder 750 bytes per
second per node, while Chord’s is slightly under 2,400.

We discuss in detail the differences that enable Bamboo to outperfornmd @h&ec-
tions 3.3.2 and 3.3.3, but some of the difference in latency between Bamtddohemd is due to
their routing styles. Bamboo performs lookups recursively, whereasdGbutes iteratively. Chord
could easily be changed to route recursively; in fact, newer versib@ard support both recur-

sive routing and PNS. Note, however, that Chord’s latency grows mpaickly under increasing
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churn than does Bamboo’s. In Section 3.3.2, we will show evidence toosuppr belief that this
growth is due to Chord’s method of choosing timeouts for lookup messages ardependent of
the lookup style employed.

Summary

To summarize this section, we note that we have observed several effediarn on
existing DHT implementations. A DHT may fail to complete lookup requests altogethé#may
complete them but return inconsistent results for the same lookup launaredifferent source
nodes. On the other hand, a DHT may continue to return consistent resuhsi@ rates increase,

but it may suffer from a dramatic increase in lookup latency in the process.

3.2 The Bamboo DHT

The remainder of this chapter focuses only on the Bamboo DHT, in whichawe im-
plemented each alternative design choice studied here. Working entirely @isingle implemen-
tation allows us to minimize the differences between experiments comparing siga dloice to
another. We thus complete the the brief description of how Bamboo wonksSextion 2.1 before
continuing.

We built Bamboo after gaining extensive experience implementing Tapest$a4],
a more sophisticated but also more complicated DHT design. As a result okflesience, our
goal in building Bamboo was to produce an extremely simple DHT design on witch advanced
functionality could be layered, but which did not depend on such adbfunctionality for correct
operation. While we built Bamboo on the Pastry geometry, we thus implementethorb/features
of Pastry that were absolutely necessary to make the system function.

Joining the Network To join an existing Bamboo network, a new nolasks an existing node
to route a join message to the existing node that is the rodt'$ddentifier. As in Pastry, the nodes
that this message traverses in route to the root are recording in the mesmsagee root responds
to the message with all the nodes in this path, its own identifier and networksadgias those of
its leaf set. The root also sends an application-level ping tnd if A responds, the root addsto
its own leaf set.

In contrast to Pastry, which uses the root’s response to performhastiopted join al-

gorithm designed to maximize the proximity of a node’s neighbors, in Bamboe Aalbes very
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Figure 3.4:The need for pushing and pulling leaf seAsrows represent neighbor links. Unless leaf
sets are also pulle@’s leaf set is never corrected.

little with the result. It simply sends an application-level ping to each node in gponse, and if
they respond to this ping, it adds them to its leaf set and routing table aspajppedif they are its
immediate predecessors or successors, or if they have the corre@gre

Maintaining the Leaf Set To maintain its leaf set over time, a Bamboo node pushes a list of the
nodes in its own leaf set to some member of that set, and pulls a list of that negldaf set in
response. In this way, the node learns of new nodes in its vicinity of the Tihig process can be
performed periodically or in response to failures, as we describe below.

Itis important, however, that a node perform both the push and puleghas example is
shown in Figure 3.4; indeed, it was observing this kind of state that led us terimept pulls. Five
nodes are shown in a system with- 1; the arrows represent each node’s successor and predecesso
according to its leaf set. Node is unavailable during which timB andD join. C subsequently
becomes available again, but nod2and D have no knowledge of it, where&sstill thinks its
neighbors aré\ andE. If leaf sets are only pushed, no node in this system will@etibout the
existence ofB or D, and its leaf set will remain incorrect. With pulls, however, the first tithe
contactsA it will learn aboutB; the same is true fdg andD.

In the published descriptions of Pastry, nodes only push leaf setsdbesenot appear to

be a corresponding pull [MCRO03]. We are not sure why this is the case.

Maintaining the Routing Table To find a neighbor with prefixy for its routing table, a Bamboo
node picks an identifiegr= p-s, wheresis a random suffix, and does a lookup iorit then sends
an application-level ping to the resulting node, and if the node resporidsadtied to the routing
table. As with leaf set maintenance, this process can be performed palipdicin response to
failures.

To find proximal neighbors, a Bamboo node can be configured to reipisaprocess
continually, even for routing table entries for which it already has neighb this latter case,

it replaces the existing neighbor if the round-trip time to a newly discoveredi®at least 10%
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public static interface SendCallBacK
void sendcallback pooleansuccess);

}

public void send (Object msg, InetSocketAddress ddttries, SendCallBack cb);

public double estrtt_ms (InetSocketAddress peer);

Figure 3.5:The Bamboo communications layer interfadde layer makes up ties attempts to
sendmsgto dst calling sendcallbackafter an ACK or too many retries. It also exposes the mean
observed round-trip time to each peer.

shorter than that to the existing one. Although this process is much lesstagihisthan that used
by other DHTSs to find nearby neighbors, we show in Section 3.3.3 that iftis gffiective.

The Messaging Layer Bamboo nodes communicate using UDP. While we originally chose UDP
to limit the number of file descriptors used by Bamboo while running multiple virtades on the
same machine, we have since come to believe that the semantics of TCP arepriapp for a
DHT. What is needed instead is message-based, unreliable, ungrdetesbngestion-controlled
communication. The manner in which these semantics are provided is brieflsibaes below,

but we emphasize here that the specifics should be viewed only as antatithe system. In
fact, the semantics we desire are quite close to those provided by DCCHPIEsing TCP-like
congestion control, and it is likely that we would have used DCCP were ilaéle, although we
admit we have not fully explored this possibility.

In the style of TCP, the Bamboo communications layer uses the time between when it
sends message and the receipt of the corresponding ACK to maintain ameexiplly weighted
average round trip time (RTT) and variance thereof for each peereMadses are made available
to higher layers of the system. It computes round-trip timeouts (RTOs) toaletidn to retransmit
a packet, and it backs the RTO off exponentially with each timeout. It maintagctngestion
window in a similar manner to the TCP slow-start algorithm, and it notifies the afiplicahen a
packet is acknowledged. Unlike TCP, our messaging layer does not impiéamseretransmit. The

interface that the communications layer exports is shown in Figure 3.5.
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3.3 Handling Churn

Having given evidence indicating that DHTs’ ability to perform lookups islbired under
churn, and having described the details of our Bamboo implementation, wiunoto the heart of
this chapter: a study of the factors contributing to DHTs’ difficulty with chamd a comparison of
solutions that can be used to overcome them. In turn, we discuss reaamtbues \periodic recovery
from neighbor failure, the calculation of good timeout values for lookup awEss and techniques

to achieve proximity in neighbor selection.

3.3.1 Reactive vs. Periodic Recovery

Early implementations of Bamboo suffered performance degradation ahder similar
to that of FreePastry. MIT Chord’s performance, however, doéslegrade in the same way. A
significant difference in its behavior is a design choice about how tolaaedected node failures.

We will call the two alternative approaches reactive and periodic regove

Reactive recovery In reactive recovery, a node reacts to the loss of one if its existing I¢af se
neighbors (or the appearance of a new node that should be added taf isete by sending a
copy of its new leaf set to every node in it. To save bandwidth, a hodemgrsend differences
from the last message, but the total number of messages i©6t) for a leaf set ofk nodes.
This algorithm converges quickly, is used in FreePastry, and was theradg supported in early
versions of Bamboo. MSPastry uses a more bandwidth-efficient, but coonglex, variant of

reactive recovery [CCRO03a].

Periodic recovery In contrast, in periodic recovery a node periodically shares its leaf et w
each of the members of that set, each of whom responds in kind with its ofseled his process
takes place independently of the node detecting changes in its leaf setimgla gptimization, a
node picks one random member of its leaf set with which to share state in eaot. or his change
saves bandwidth, but still converges@tlogk) phases, wherk s the size of the leaf set. (Further
details can be found elsewhere [RGRKO03].) This algorithm is the onertiynesed by Bamboo,
and the periodic nature of this algorithm is shared by Chord’s method pirgés successor list

correct.
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Positive feedback cycles

Reactive recovery runs the risk of creating a positive feedback egdellows. Consider
a node whose access link to the network is sufficiently congested suchketfextal consecutive
timeouts cause it to believe that one of its neighbors has failed. If the nogeagaring reactively,
recovery operations begin, and the node will add even more packetslteédyacongested network
link. This added congestion will increase the likelihood that the node will mistglkm®mnclude that
other neighbors have failed. If this process continues, the node witltgaly cause congestion
collapse on its access link.

Observations of these cycles in the early Bamboo code (and examinatioa Ghtrd
code) originally led us to propose periodic recovery for handling chBgndecoupling the rate of
recovery from the discovery of failures, periodic recovery prévene feedback cycle described
above. Moreover, by lengthening the recovery period with the obsemaf message timeouts, we
can introduce a negative feedback cycle, further improving resilience.

Another way to mitigate the instability associated with reactive recovery is to be mor
conservative when detecting node failure. We have found one efempiproach to be to conclude
failure only after 15 consecutive message timeouts to a neighbor. Since tsrageubacked off
multiplicatively to a maximum of five seconds, it is unlikely that a node will concliadlare due to
congestion. One drawback with this technique, however, is that neigltieirhave actually failed
remain in a node’s routing table for some time. Lookups that would route thrthgge neighbors
are thus delayed, resulting in long lookup latencies. To remedy this probleadeastops routing
through a neighbor after seeing five consecutive message timeouts teigtator. We have found

these changes make reactive recovery feasible for small leaf sets aedatgochurn.

Scalability

Experiments show little difference in correctness between periodic antiveesecovery

at low churn rates. (At high churn rates, reactive recovery is fasad To see why, consider a
nodeA that joins a network, and I& be the node in the existing network whose identifier most
closely matches that &. As in PastryA retrieves its initial leaf set by contactirg) andB addsA

to its leaf set immediately after confirming its IP address and port (with a probsage). UntiA's
arrival propagates through the network, another roaeay still route messages that should go to
Ato B instead, buB will just forward these messages onAo Likewise, shouldA fail, B will still

be inC’s leaf set, so once routing messagestime out,C and other nearby nodes will generally
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Figure 3.6:Reactive versus periodic recoveWithout churn, reactive recovery is very efficient, as
messages are only sent in response to actual changes. At reasdnableates, however, periodic
recovery uses less bandwidth, and lower contention for the network teddwer latencies.

all agree thaB is the next best choice.

While both periodic and reactive recovery achieve roughly identicakctress, there is
a large difference in the bandwidth consumed under different chies end leaf set sizes. (A
commonly accepted rule of thumb is that to provide sufficient resilience to veassite failure,
the size of a node’s leaf set should be logarithmic in the system size.) Undehlarn, reactive
recovery is very efficient, as messages are only sent in respondeidab@awnges, whereas periodic
recovery is wasteful. As churn increases, however, reactivereegecomes more expensive, and
this behavior is exacerbated by increasing leaf set size. Not only duetessee more failures when
its leaf set is larger, but the set of other nodes it must notify about tlutireschanges in its own
leaf set is larger. In contrast, periodic recovery aggregates alelsan each period into a single
message.

Figure 3.6 shows this contrast in Bamboo using leaf sets of 24 nodes,fthat dieaf set
size in FreePastry. In this figure, we ran Bamboo using both configusatotwo 20-minute peri-
ods using 47 and 23 minute median session times, respectively. These iodspeere separated
by five minutes with no churn.

We note that during the periods of the test where there is no churn veastiovery uses
less than half of the bandwidth of periodic recovery. On the other hartgrichurn its bandwidth
use jumps dramatically. As discussed above, Bamboo does not suffepérsitive feedback cycles
on account of this increased bandwidth usage. Nevertheless, tharedsages sent by reactive
recovery compete with lookup messages for the available bandwidth, @hdsincreases we see

a corresponding increase in lookup latency. Although not shown in theefighe number of hops
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per lookup is virtually identical between the two schemes, implying that the griovséindwidth is
most likely due to contention for the available bandwidth.

Since our goal is to handle median session times down to a few minutes with lowplooku
latency, we do not explore reactive recovery further in this work. fEmeainder of the Bamboo

results we present are all obtained using periodic recovery.

3.3.2 Timeout Calculation

In this section, we discuss the role that lookup message timeouts play in hactuling

To understand the relative importance of timeouts in a DHT as opposed to atnaore
ditional networked system, consider a traditional client-server systemasithe networked file
system (NFS). In NFS, the server does not often fail, and when ittthees are generally few op-
tions for recovery and no alternative servers to fail over to. If agesp to an NFS request is not
received in the expected time, the client can only try again with an exponeiialasing timeout
value.

In a peer-to-peer system under churn, in contrast, requests wilebedntly sent to a
node that has left the system, possibly forever. At the same time, a DHT hmsatt@rnate paths
available to complete a lookup. Simply backing off the request period is thusragsponse to a
request timeout; it is often better to retry the request through a diffeséghhbor.

A node should ensure that the timeout for a request was judiciously skhefere routing
to an alternate neighbor. If it is too short, the node to which the original wasmay be yet to
receive it, may be still processing it, or the response may be queued inttherkelf so, injecting
additional requests may result in the use of additional bandwidth withoutemsfibial result—for
example, in the case that the local node’s access link is congested. r€apyvi the timeout is
too long, the requesting node may waste time waiting for a response fromeatmatchas left the
network. If the request rate is high, these long waits may cause untabugp@eie growth on the
requesting node that might be avoided with shorter timeouts.

For these reasons, nodes should accurately choose timeouts suchatieatesponse is
indicative of node failure, rather than network congestion or procdsad.

Techniques

We discuss and study three alternative timeout calculation strategies. Insthevé fix
all timeouts at a conservative value of five seconds as a control. Intbedewe calculate TCP-
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style timeouts using direct measurement of past response times. Finallypleeeexsing indirect
measurements from a virtual coordinate algorithm to calculate timeouts.

TCP-style timeouts: If a DHT routes recursively, it rarely communicates with nodes other than
its direct neighbors in the overlay network. Since the number of thesebmigls logarithmic in the
size of the network, and since each node periodically probes eactboeifgin availability, a node
can easily maintain a past history of each neighbor’s response timesfor calculating timeouts.

In Bamboo, we have implemented this strategy following the style of the early Tazle MK 88],
where each node maintains an exponentially weighted mean and varianeere$pionse time for

each neighbor. Specifically, the estimate round-trip timeout (RTO) for dheigs calculated as

RTO = AVG +4 x VAR,

where AVG is the observed average round-trip time and VAR is the oldemean variance of that
time.

Timeouts from virtual coordinates: In contrast to recursive routing, with iterative routing a node
must potentially have a good timeout famyother node in the network. However, in some scenarios
iterative routing does have attractive properties. For example, sincetinessof a lookup request
controls the entire process of iterative routing, it is easy to explore aaliffierent lookup paths in
parallel. For only a constant increase in bandwidth used, this techniguents a single timeout
from delaying a lookup [LSGO04].

Virtual coordinatesprovide one approach to computing timeouts without previously mea-
suring the response time to every node in the system. In this scheme, a didtritadhkine learning
algorithm is employed to assign to each node coordinates in a virtual metrie spak that the
distance between two nodes in the space is proportional to their latency indbdying network.

Bamboo includes an implementation of the Vivaldi coordinate system employ€tdnyl
[CDK'03b]. Vivaldi keeps an exponentially-weighted average of the efrpast round-trip times
calculated with the coordinates, and computes the RTO as

RTO=v+6x0a+15

wherev is the predicted round-trip time ardis the average error. The constant term of 15 mil-
liseconds is added to avoid unnecessary retransmissions when thetaestethne local host.
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Figure 3.7:TCP-style versus virtual coordinate-based timeouts in Bambmoeeouts chosen using
Vivaldi are competitive with TCP-style timeouts for moderate churn rates.

Results

TCP-style timeouts assume a recursive routing algorithm, and a virtual catediyistem
is necessary only when routing iteratively. While we would ideally comparédvibeapproaches
by measuring each in its intended environment, this would prevent us frdatingpthe effect of
timeouts from the differences caused by routing styles.

Instead, we study both schemes under recursive routing. If timeoutdatald with vir-
tual coordinates provide performance comparable to those calculatedTi€Bhstyle under recur-
sive routing, we can expect the virtual coordinate scheme to not bébgiadly expensive under
iterative routing. While other issues may remain with iterative routing undendeug. congestion
control—see Section 3.5), this result would be a useful one.

Figure 3.7 shows a direct comparison of the three timeout calculation metinods u
increasing levels of churn. In all cases in this experiment, the Bamboaoaoations differed only
in choice of timeout calculation method. Proximity neighbor selection was usedhd latency
measurements for PNS used separate direct probing and not the virbudinates.

Even under light levels of churn, fixing all timeouts at five seconds cdos&up timeouts
to pull the mean latency up to more than twice that of the other configurationfiyneiory our
intuition about the importance of good timeout values in DHT routing undemchdoreover, by
comparing Figure 3.7 to Figure 3.3, we note that under high churn timeoul&@n has a greater
effect on lookup latency than the use of PNS.

Virtual coordinate-based timeouts achieve very similar mean latency to TGPtiste-

outs at low churn. Furthermore, they perform within a factor of two of IBfe measurements
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until the median churn rate drops to 23 minutes. Past this point, their perfoentanckly di-
verges, but virtual coordinates continue to provide mean lookup latemedes two seconds down
to twelve-minute median session times.

Finally, we note the similarity in shape of Figure 3.7 to Figure 3.3, where we cadpa
the performance of Chord to Bamboo, suggesting that the growth in lootenciaunder Chord at
high churn rates is due to timeout calculation based on virtual coordinates.

3.3.3 Proximity Neighbor Selection

Perhaps one of the most studied aspects of DHT design has been proxéigihbor
selection (PNS), the process of choosing among the potential neiglob@nsyf given routing table
entry according to their network latency to the choosing node. This @sesawell motivated. The
stretchof a lookup operation is defined as the latency of the lookup divided byotnedrtrip time
between the lookup source and the node discovered by the lookup in dieelying IP network.
Dabek et al. present an argument and experimental data that suggeRNt allows a DHT oN
nodes to achieve median stretch of only 1.5, independent of the size @fttherk and despite using
O(logN) hops [DLS"04]. Others have proved that PNS can be used to provide constanhstre
locating replicas under a restricted network model [PRR97]. This is thesfirdy of which we are
aware, however, to compare methods of achieving PNS under churrfirstiake a moment to

discuss the common philosophy and techniques shared by each of ththalgave study.

Commonalities

One of the earliest insights in DHT design was the separation of correcamesper-
formance in the distinction between neighbors in the leaf set and neighbdhng irouting ta-
ble [RDO1, SMK"01]. So long as the leaf sets in the system are correct, lookups will aksays
correct results, although they may ta®éN) hops to do so. Leaf set maintenance is thus given
priority over routing table maintenance by most DHTs. In the same mannemtedhat so long
as each entry in the routing table lmmeappropriate neighbor (i.e., one with the correct identifier
prefix), lookups will always complete i@(logN) hops, even though they make take longer than if
the neighbors had been chosen for proximity. We say such lookupfanient even though they
may not have low stretch. By this argument, we reason that it is desirabledodilting table entry
quickly, even with a less than optimal neighbor; finding a nearby neightzoloiwer priority.

There is a further argument to treating proximity as a lower priority in the poesef
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churn. Since we expect our set of neighbors to change over time asffihe churn process, it
makes little sense to work too hard to find the absolute closest neighbor givanytime; we might
expend considerable bandwidth to find them only to see them leave the ketwawtly afterward.
As such, our general approach is to run each of the algorithms dedtxb@vperiodically. In the
case where churn is high, this technigue allows us to retune the routing sahke@etwork changes.
When churn is low, rerunning the algorithms makes up for latency measuremers caused by
transient network conditions in previous runs.

Our general approach to finding nearby neighbors thus takes the ifodjdorm. First,
we use one of the algorithms below to find nodes that may be near to the latml hext, we
measure the latency to those nodes. If we have no existing neighbor inutiregrtable entry that
the measured node would fill, or if it is closer than the existing routing table,emtryeplace that
entry, otherwise we leave the routing table unchanged. Although the ldthdeost of multiple
measurements is high, the storage cost to remember past measurements is oeompromise,
we perform only a single latency measurement to each discovered node day particular run of
an algorithm, but we keep an exponentially weighted average of past ragesus for each node,
and we use this average value in deciding the relative closeness of fitikeaverage occupies only
eight bytes of memory for each measured node, so we expect this appooscale comfortably to

very large systems.

Techniques

The techniques for proximity neighbor selection that we study here aralgampling,
sampling of our neighbors’ neighbors, and sampling of the nodes thatdwaweighbors as their

neighbors. We describe each of these techniques in turn.

Global sampling In global sampling we use the lookup functionality of the DHT to find new
neighbors. For a routing table entry that requires a neighbor with ppefixe perform a lookup
for a random identifier with prefip. The node returned by this lookup will almost always have the
desired prefix. (As an example of why this is not always the case, ndta thakup of identifier 0
may return a node whose identifier starts with 1 if the node with the largest idemmifihe ring is
numerically closer to 0 than the node with the smallest identifier.) Given en@ungplss, all nodes
with prefix p will eventually be probed. The motivation for this technique comes from Gurhetad
al., who showed that sampling only around 16 nodes for each routing tatnlepgovides almost
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Figure 3.8: Sampling neighbors’ neighbordf A joins usingD as its gateway, its initial level-O
neighbors are the same as thos®phssume that these are all within the dashed ineontacts a

level-0 neighbor, e.dC, and asks it for its level-0 neighbor&.would learn abouB in this manner.

However, there may be no path from thé& ideal neighbors to those &

optimal proximity [GGG 03].

There are some cases, however, where global sampling will take onedag long to find
the closest possible neighbor. For example, consider two nodes epfrcen the core Internet by
the same, high latency access link, as shown in Figure 3.9. The relativelalggcy seen by these
two nodes to all other nodes in the network makes them attractive neigladraadh other; if they
have different first digits in a network with logarithm base two, they castiraly reduce the cost
of the first hop of many routes by learning about each other. Howthetjme for these nodes to
find each other using global sampling is proportional to the size of the tatabrie and so they
may not find each other before their sessions end. It is this drawbagklwdl sampling that leads

us to consider other techniques.

Neighbors’ neighbors The next technique we consider is sampling our neighbors neighbors, a
process calledouting table maintenanci the Pastry work [RDO1]. In this technique, we contact
an existing routing table neighbor at levef our routing table and ask for its leeheighbors. Like
us, these nodes share a prefid ef 1 digits with the contacted neighbor and are thus appropriate
for use in our routing table as well. As in global sampling, having discovitrese new nodes, we
probe them for latency and use them if they are closer than our existinghoeigy

The motivation for sampling neighbors’ neighbors is illustrated in Figure 3r8liés on
the expectation that proximity in the network is roughly transitive. If a nodeodisrs one nearby
node, then that node’s neighbors are probably also nearby. In tiswgsexpect that a node can
“walk” through the graph of neighbor links to the set of nodes most near it.

To see one possible shortcoming of sampling our neighbors’ neighbarsideo again
Figure 3.9. While the two isolated nodes would like to discover each other, iiileely that any
other nodes in the network would prefer them as neighbors; their isolatikestlaem unattractive

for routing lookups that originate elsewhere, except in the rare casthdyeare the result of those
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Figure 3.9:Sampling neighbors’ inverse neighboldodesA andB are isolated from the remainder
of the network by a long latency, and are initially unaware of each otheh &situation is possible
if, for example, two European nodes join a network of primarily North Americades. As such,
they make unattractive neighbors for other nodes, but they would still likedeach other. If they
both haveC as a neighbor, they can find each other by asKirigr its inverse neighbors.

lookups. As such, since neighbor links in DHTs are rarely symmetric, itlikaiy that there is a
path through the graph of neighbor links that will lead one isolated node totltee, despite their

relative proximity.

Neighbors’ inverse neighbors The latter argument presents an obvious alternative approach. In-

stead of sampling our neighbors’ neighbors, why not sample those tieatdsave the same neigh-
bors as the local node? This technique was originally proposed in thetiapearest neighbor
algorithm [HKRZ02]; we call it sampling our neighbors’ inverse neigtshdfo motivate this tech-
nique, consider again Figure 3.9. Although the two remote nodes are urtiikbly neighbors of
many other nodes, given that their existing neighbors are mostly neadyyath likely to choose
the same neighbors from outside their isolated domain. For this reason, ¢hidkedir to find each
other in the set of their neighbors’ inverse neighbors.

Normally, a DHT node would not record the set of nodes that use it agghbw. Ac-
tively managing such a list, in fact, requires additional probing bandwidthre@tly, the Bamboo
implementation does actively manage this set, but it could be easily approxinh@achanode by
keeping track of the set of nodes that have sent it liveness probes iasthminute or so. We plan

to implement this optimization in our future work.

Recursive sampling Consider Figure 3.9 one final time, and assume that we are using a single-bit

digits and that the two remote nodes begin with different digits, i.e. 0 and &ctdggly. The node
whose identifier starts with 0 will have only one neighbor whose identifieinbegith 1 (its level-0

neighbor). Likewise, the node whose identifier starts with 1 will have ondyraighbor that starts
with 0. The set of neighbors in whose inverse neighbor sets the two isalatgbdbors can find
each other is thus very small. As such, until the two isolated nodes have feuy nearby level-0
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(1) function nearestNeighbors () =

(2) S=highestNonempRtLevel ();

(3) | =longestMatchingPrefix3);

(4) whilel >=0

(5) forall nin S

(6) T = n.getinverseRtNeighbors)(
(7 S=closestk, SUT);

Figure 3.10:The Tapestry nearest neighbor algorithm.

neighbors, they will be unlikely to find each other among their neighborsrge/neighbors.

To remedy this final problem, we can perform the sampling of nodes in a maimniéar
to that used by the Tapestry nearest neighbor algorithm and the Pasitnjzed join algorithm.
Pseudo-code for this technique is shown in Figure 3.10. Starting with thestigdvell in its
routing table, a node contacts the neighbors at that level and retrievesaighbors or inverse
neighbors. The latency to each newly discovered node is measured|l dnd thek closest are
discarded. The node then decremérdad retrieves the levélneighbors from each non-discarded
node. This process is repeated uhtil 0. Along the way, each discovered neighbor is considered as
a candidate for use in the routing table. To keep the cost of this algorithnmelignit it to having
at most three outstanding messages (neighbor requests or latency) ptabgstime.

Note that although this process starts by sampling from the routing table tthiergeles
on which it recurses is not constrained by the prefix-matching structtinatdable. As such, it does
not suffer from the small rendezvous set problem discussed alhwo¥act, under certain network
assumptions, it has been proved that this process finds a node’stnegighbor in the underlying

network.

Results

In order to compare the techniques described above, it is important twleonst only
effective they are at finding nearby neighbors, but also at whadveiath cost they do so. For
example, global sampling at a high enough rate relative to the churn rated wohieve perfect
proximity, but at the cost of a very large number of lookups and latenchgs. To make this
comparison, then, we ran each algorithm (and some combinations of thear)atsvperiods, then
plotted the mean lookup latency under churn versus bandwidth usededuitsifor median session
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Figure 3.11:Comparison of PNS techniqgueiNo PNS” is the control case, where proximity is
ignored. “Global Sampling” uses the lookup function to sample all nodes iDHIE “NN” is
sampling our neighbor’s neighbors, and “NIN” is sampling their inversghimrs. The recursive
versions of “NN” and “NIN” mimic the nearest-neighbor algorithms of Paatrg Tapestry, respec-
tively. Note that the scales are different between the two figures.

times of 47 minutes are shown in Figure 3.11, which is split into two graphs fotycla

Figure 3.11(a) shows several interesting results. First, we note thatadiitie bit of
global sampling is necessary to produce a drastic improvement in latersyysudie configuration
that is not using PNS. With virtually no increase in bandwidth, global sampliogsdthe mean
latency from 450 ms to 340 ms.

Next, much to our surprise, we find that simple sampling of our neighboighhers or
inverse neighbors is not terribly effective. As we argued above, #ssltr may be in part due to
the constraints of the routing table, but we did not expect the effect to Heasnatic. On the other
hand, the recursive versions of both algorithms are at least as effastiglobal sampling, but not
much more so. This result agrees with the contention of Gummadi et al. thaa @nfyall amount
of global sampling is necessary to achieve near-optimal PNS.

Figure 3.11(b) shows several combinations of the various algorithms.a{zampling
plus sampling of neighbors’ neighbors does well, offering a small deenedatency without much
additional bandwidth. However, the other combinations offer similar resdtthis point, it seems
prudent to say that the most effective technique is to combine global samytmgny other tech-
nigue. While there may be other differences between the techniquesveatee by this analysis,

we see no clear reason to prefer one over another as yet.
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3.4 Related Work

As we noted at the start of this chapter, while DHTs have been the sulbjeuiah re-
search in the last 4 years or so, there have been few studies of the relsilience of real im-
plementations at scale, perhaps because of the difficulty of deployingirirestting, and creating
workloads for such deployments. However, there has been a substambdiant of theoretical and
simulation-based work.

Gummadi et al. [GGG03] present a comprehensive analysis of the resilience of the var-
ious DHT geometries to failures.

Liben-Nowell et al. [LNBKO02] present a theoretical analysis of struetupeer-to-peer
overlays from the point of view of churn as a continuous processy ptave a lower bound on the
maintenance traffic needed to keep such networks consistent undar ahd show that Chord’s
algorithms are within a logarithmic factor of this bound. This chapter, in cantras focused more
on the systems issues that arise in handling churn in a DHT. For examplewesehserved what
they call “false suspicions of failure”, the appearance that a functiaminig has failed, and shown
how reactive failure recovery can exacerbate such conditions.

Mahajan et al. [IMCRO03] present a simulation-based analysis of Pastilyiahhey study
the probability that a DHT node will forward a lookup message to a failed asdefunction of the
rate of maintenance traffic. They also present an algorithm for automatieaihg the maintenance
rate for a given failure rate. Since this algorithm increases the rate of maite traffic in response
to losses, we are concerned that it may cause positive feedback likeldose we have observed
in reactive recovery. Moreover, we believe their failure model is pessanés they do not consider
hop-by-hop retransmissions of lookup messages. By acknowledgikgdoonessages on each hop,
a DHT can route around failed nodes in the middle of a lookup path, and in tris we have
shown that good timeout values can be computed to minimize the cost of siarsmissions.

Castro et al. [CCR03a] presented a number of optimizations they havermped in
MSPastry, the Microsoft Research implementation of Pastry, using simulatiise, Li et al.
[LSMT05, LSG"04] performed a detailed simulation-based analysis of several diffBtdiis un-
der churn, varying their parameters to explore the latency-bandwidtbdifacdoresented. It was
their work that inspired our analysis of different PNS techniques.

As opposed to the emulated network used in this study, simulations do not usordly
sider such network issues as queuing, packet loss, etc. By not dnitigeyg either allow simulation
of far larger networks than we have studied here [CCR03a, MCR03hey are able to explore a
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far larger space of possible DHT configurations [LSD&, LSG"04]. On the other hand, they do
not reveal subtle issues in DHT design, such as the tradeoffs beteaetive and periodic recov-
ery. Also, they do not reveal the interactions of lookup traffic and maamtea traffic in competing

for network bandwidth. We are interested in whether a useful middle drexists between these
approaches.

Finally, a number of useful features for handling churn have begmogexl, but are not
implemented by Bamboo. For example, Kademlia [MMO02] maintains several raiglitr each
routing table entry, ordered by the length of time they have been neighNerger nodes replace
existing neighbors only after failure of the latter. This design decision is aaheditigating the
effects of the high “infant mortality” observed in peer-to-peer networks.

Another approach to handling churn is to introduce a hierarchy into therayshrough
stable “superpeers” [gnu, ZDHD2]. While an explicit hierarchy is a viable strategy for handling
load in some cases, this work has shown that a fully decentralized, n@rdhieeal DHT can in fact
handle high rates of churn at the routing layer.

3.5 Future Work

As discussed in the introduction, there are several other limitations of thig Statwe
think provide for important future work. At an algorithmic level, we would likestady the effects
of alternate routing table neighbors as in Kademlia and Tapestry. We wouoldikdso continue
our study of iterative versus recursive routing. While we show in Chaptleat iterative routing has
performance advantages in networks with a significant fraction of slaes)ave have yet to study it
under heavy churn. Furthermore, congestion control for iteratideulo®is a challenging problem.
The Chord DHT uses a congestion control algorithm [DD8] called STP for this purpose, but its
behavior under churn has not been tested either.

At a methodological level, we would like to broaden our study to include betteletao
of network topology and churn. We have so far used only a single nktwwpology in our work,
and so our results should be not be taken as the last word on PNStitujaay the distribution of
internode latencies in our ModelNet topology is more Gaussian than the distnilnf latencies
measured on the Internet. Unfortunately for our purposes, these raddatency distributions do
not include topology information, and thus cannot be used to simulate the kimetwork cross
traffic that we have found important in this study. The existence of bettetdgies would be most

welcome. While we have been running our code successfully on a reebnke—PlanetLab—for
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over a year, PlanetLab is difficult to use for the sort of controlled chypeements we describe
here.

In addition to more realistic network models, we would also like to include more tiealis
models of churn in our future work. One idea that was suggested to us &yanymous reviewer
was to scale traces of session times collected from deployed networks tecpradange of churn
rates with a more realistic distribution. We would like to explore this approacheteless, we
believe that the effects of the factors we have studied are dramatic etiwaigtimey will remain
important even as our models improve.

Finally, in this work we have only shown the resistance of the Bamboo lookigp ta
churn. As noted in Chapter 2, the ability of a DHT to handle churn at thegadager is limited by
the available bandwidth, and we do not expect a DHT storing large amoludéaoto handle the
degree of churn we have studied in this chapter. That said, we do si©majter 5 that OpenDHT
can handle the churn on PlanetLab, and we would like to study the resili¢mtkes DHT-based
primitives—such as multicast—to churn in the future.

3.6 Conclusion

In this chapter we have summarized the rates of churn observed in depegeto-peer
systems and shown that existing DHTs exhibit less than desirable perfcenaathe higher end
of these churn rates. We have presented Bamboo and explored vaeisigs tradeoffs and their
effects on its ability to handle churn.

The design tradeoffs we studied in this chapter fall into three broad c#&egoeactive
versus periodic recovery from neighbor failure, the calculation of tinrseoun lookup messages, and
proximity neighbor selection. We have presented the danger of posigdbdek cycles in reactive
recovery and discussed two ways to break such cycles. First, we danth@DHT much more
cautious about declaring neighbors failed, in order to limit the possibility tkeatvill be tricked
into recovering a non-faulty node by network congestion. Second,resepted the technique of
periodic recovery. Finally, we demonstrated that reactive recovensssd#ficient than periodic
recovery under reasonable churn rates when leaf sets are latbeyasould be in a large system.

With respect to timeout calculation, we have shown that TCP-style timeoutl@adcu
performs best, but argued that it is only appropriate for lookups pedgd recursively. It has long
been known that recursive routing provides lower latency lookups iteaative, but this result

presents a further argument for recursive routing where the lowtesichkais important. However,
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we have also shown that while they are not as effective as TCP-style tispeioneouts based on
virtual coordinates are quite reasonable under moderate rates of chlnisiresult indicates that
at least with respect to timeouts, iterative routing should not be infeasiblerunoderate churn.
Moreover, as suggested by the results in Chapter 7, the ease with whiciploan be parallelized
under iterative routing may afford additional resilience to churn.

Concerning proximity neighbor selection, we have shown that global sagngdin pro-
vide a 24% reduction in latency for virtually no increase in bandwidth usgdisiBhg an additional
40% more bandwidth, a 42% decrease in latency can be achieved. Otheigtexs are also ef-
fective, especially our adaptations of the Pastry and Tapestry neeigbtor algorithms, but not
much more so than simple global sampling. Merely sampling our neighbors’baiglor inverse
neighbors is not very effective in comparison. Some combination of gk#apling an any of the
other techniques seems to provide the best performance at the least cost.
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Chapter 4

Storage

In the previous chapter we explored how to implement DHT lookup in a clrasitient
manner. While it is important as a building block, the lookup interface is too leetfer many
DHT applications, which instead require higher-level functionality suchui&et or DOLR. As
discussed in Chapter 1, these interfaces share a common piece of falitgtidault-tolerant storage
of key-value pairs. While some applications can implement their own fault-tdlstarage using the
soft-state approach described in Chapter 2, for many others faultriotermmuch more efficiently

supported by the DHT itself. This chapter describes Bamboo’s fault-taterstorage layer.

4.1 Background

As described in the introduction, the goal of Bamboo's storage algorithm stote a
given a key-value paifk, v) on pred(k) and sucgk) fori € [1,¢], where!’ < ¢, the leaf set radius.
To simplify the remainder, we introduce the following terms. We denotetbg number of replicas
for each value; i.e.r = 2¢. We call the set of Bamboo nodes that store values undek kbg
replica setfor k, and we denote this sB(k). We refer to members of this set as replicaskfarhen
the meaning is clear. Furthermore, we denot&Rb¥(A) the set of keys for which a nodestores
replicas, and we say thatis responsiblefor the keys inR™1(A).

To see why this problem is so challenging, consider Figure 4.1, which iltastthe
process of storing three values with the same key onto six intermittently-availdblenodes.
Initially, R(k) = {A,C,D,F}, so when the black value is put, it is stored by node€, D, andF.
Then nodeD fails, and node® andE join, changingR(k) to {B,C,E,F}. Next, a white value is
put. Then nod€ fails, and nodé recovers, changinB(k) to {A,B,D,E}. Then, a grey value is
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-

] |
m M
k k
Step 5 A grey value is put. Step 6 C recovers.

Step 7 The desired final state.

Figure 4.1:The storage problemvalues are put into the DHT as nodes fail and recover. The goal
of the storage algorithm is to reach step 7 from step 6, even though ncknodss all the values.

put. Finally, nodeC recovers, changing(k) to {B,C,D,E}. While all values were stored onto the
correct set of nodes at the time they were put into the system, by Step 6 igtihe, fihey are no
longer all stored at the correct nodes. Further complicating the probleome node is storing all
three values.

Our initial approach to solving this problem was to have the root for eaglkéep track
of nodes as they joined and left its leaf set and thereby determine whelmeawas no longer
sufficiently replicated and on what nodes new replicas should be crealidugh this technique
seems relatively straightforward, there are a number of tricky corrsgsda implementing it, and
we were never able to complete a working implementation in Bamboo.

Our next thought towards solving the problem was that rather thanutigreicking all
node joins and departures, we should instead implement a continuousgmaehich each mis-
placed value “migrated” towards its correct set of replicas. In workingtiee details of such a
process, we we unknowingly re-invented simple epidemic techniquesthstnareafter, we redis-
covered the epidemic literature (e.g. [DG877,JT75, VVRB02]). Because many of the techniques
we will explore later in this chapter are in fact special cases of a bragabsatrum of epidemic

algorithms, we present a brief overview of these algorithms before camginu
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4.2 Introduction to Epidemic Algorithms

In this section we briefly describe two classes of epidemic algoritlam$.entropyand
rumor mongering We follow the terminology of Demers et al. [DGI87], who present a compre-

hensive overview of the field.

4.2.1 Anti-Entropy

Consider a seR of r replicas for a database. For the moment, let us assume that once a
key-value tuple is written to this database, it cannot be changed, so thatrtkistency problem is
reduced to ensuring that every replica contains every tuple. This situatiogsponds to the the set
of Bamboo nodes iR(k) trying to ensure that they each have all values put ukgdier example.

Anti-entropy is a procedure run periodically by each replica wherelgntacts a remote
replica and synchronizes its database with that peer, transferringt@alehknown only to one
replica to the other. When peers are chosen uniformly and randomly, thisigee is known to
propagate a new tuple to every replicaOflogr) periods [Pit87].

There are two basic variations of anti-entroggushandpull. In push, every period a
replicaA chooses a random peBrand send® all the values thaf is currently storing. In pullA
chooses a random peRBrand asks it for all the values thBtis currently storing.

While both push and pull anti-entropy convergeQlogr) periods, the constants are
different. In particular, pull is more efficient when most replicas alrelaalye a value; since the
probability of contacting a random replica that does not know the value i, snmaplica that does
not know the value is likely to contact one that does. However, if only epéca has a value, a
replica using pull that does not have the value is unlikely to chose the oreretplica that does.
In contrast, push more efficiently moves a value stored by only one repliha test, since early in

the process each peer this one replica chooses is unlikely to alreadihbaxsdue.

4.2.2 Rumor Mongering

Consider again our set of replicas, and consider a tuple that originaditsex only one
replica. Rumor mongering proceeds as follows: as soon as a replica kaont a new tuple, it
starts sending it to other replicas. Each time it sends the rumor to a replica #ivaady aware of
it, however, it will stop spreading the rumor with probabilityd This process begins with the first

replica and continues until every replica that learns about the tuple Vs gp spreading it.
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Unlike anti-entropy, rumor mongering does not guarantee that eveligaepceives the
tuple! However, rumor-mongering is much more efficient at propagating a prelyiainknown
value to a set of replicas for low cost. For example, whea 1, the expected fraction of replicas
that receive the tuple is 0.8, while the expected number of messages selytisrdr [DGH'87].

4.2.3 Epidemic Algorithms and System Stability

We close this section with a note concerning the stability of epidemic algorithmgld/og
van Renesse, and Birman [VVRBO02] note a condition in many group comntiomdachnologies
that they compare to thrashing in an operating system: in trying to recovargnoapparent host
failure, the system often causes further network stress, which itselieis nfistaken for the failure
of other hosts, resulting in a positive feedback cycle. This behavior is sitoitaat we observed in
FreePastry in Chapter 3.

In contrast, with epidemic algorithms, we are always able to move the systemafno
incorrect state to a “more correct” one; each round of anti-entropyimor mongering has the
potential to improve the state of the system, and this potential is largely indepesfdbe period
between rounds. For a given level of sustainable network stress,weecan choose a period to
avoid ever overloading the network. Given sufficient load, even thigtthng will not save the
system, but it does prevent the network overload that would otherwise wéth even lower stress
levels. As another parallel to Chapter 3, one can consider the leaf seenmace algorithm of
Bamboo as a simple form of anti-entropy; the database being shared isigisffadhe nodes whose

identifiers lie in a local area of the ring.

4.3 Epidemic Algorithms Meet DHTs

We now describe Bamboo's storage subsystem’s algorithms and showetlagiomship

to epidemic algorithms.

4.3.1 Replica Synchronization

In replica synchronization, members of a replica set contact each ottiguudl values
from their peers. Figure 4.2 illustrates this process: a re@ligeeriodically chooses a random
replicaB # A, computes the set of keys for which they are both respongtbfgA) "\R~1(B), and

Iwe note that the probability of this failure case can be driven arbitrarily Yofaen rumors are passed to recipients
chosen uniformly and randomly, the fraction of replicas that do n&ivea tuple is exponentially small im
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Figure 4.2:Replica synchronizatioNodeA asks nodd which key-value pairs it is storing in their
common range. NodB replies with a’k,H (v)) pair for each key and value it is storing, whétév)

is the SHA-1 hash of. A compares these pairs with those it is storing, and thenBé$tisthe pair
corresponding tdky, H(v2)), which A does not recognize. Finalli3 sendgky,v2) to A. Note that
B need not know all the pairs for this procedure to work. ABayill learn about(ks, v3) when it
initiates replica synchronization with

performs anti-entropy wittB over this set. Specifically, for each key-value p@irv) that B has
stored, it will sendA the pair(k,H (v)), whereH (v) is the SHA-1 hash of. Each node indexes the
values it has stored by their keys and SHA-1 hashespamksB's response to determine whether
B has any values it does not. If s&pulls those values frorB.

Basic properties of replica synchronization We note that replica synchronization is just simple
anti-entropy. Most importantly, it is easy to see that it is correct in the follgugiense: given that
at least one replica iR(k) has a value, all replicas iR(k) will eventually obtain it. It follows from
the epidemic literature that replica synchronization is also efficient in theesbasthe value will
be fully replicated in a number of periods logarithmic in the number of replicagsh&more, since
we expect the replicas iR(k) to be mostly consistent most of the time, we see from the literature
that pull is a better approach than push for replica synchronization.

As currently specified, however, the bandwidth cost of replica symikation is propor-
tional to the number of values stored on each replica; in each synchiionibetweerA andB, B
sendsA one(k,H(v)) pair for every valud stores. In the remainder of this section we explore ways

to reduce this cost.

Using Merkle trees as summaries As pictured in Figure 4.3, a Merkle tree [Mer88] is a data
structure that allows one to check the integrity ofratbbyte subrange of a-byte file using only
O(mlogn) state. In the bottom row of the figurd;,ds, ... represent the blocks of a file. Each
interior node of the tree is the secure hash of its two children; e g-,h(hs-hs), where: represents
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Figure 4.3:A Merkle tree.If we already know the root of the tree and its height, we can verify the
integrity of blockds using only the data inside the dotted line.

concatenation.
Assume that a noda knows the root of the tredy;, and its height, and another noBe
sends idz and all of the information contained inside the dotted line in the figure. Maxdn check
the integrity of theds sent byB as follows. By the one-wayness of the secure hash, it is presumably
hard to find anothehs or he such thah; = h(hs - hg). So by checking that the root it already knows
is in fact equal td(hs - hg), A verifies the integrity ofis. Likewise, it is hard to find anothéw or h;
such thats = h(h; - hp), and in this wayA verifies the integrity ohy. Finally, A usesh, = (d3-ds)
to verify the integrity ofds.

Using Merkle trees in anti-entropy We can use Merkle trees to reduce the cost of anti-entropy
between two hosta andB as follows: we sort the¢k, H (v)) pairs for allk € R"1(A)NR~(B) and
build a Merkle tree above them. The anti-entropy process between twofasttB then proceeds
as shown in Figure 4.4. Firsh sendsB the SHA-1 hash of the root and the height of its tree. If
this root and height are the sameBis, then the two hosts have the same setkoH (v)) pairs,
soB sends back a success message and the process is complete. OtlB=sersis back its root’s
children. NextA compares each of its own root’s childrerBs; on each hash where the two differ,
Arecurses, fetching the associated child blocks fBrithis process continues until the leaf (data)
blocks are reached, after whigtwill have fetched fronB any (k,H (v)) pairs for values3 has that
A does not. FinallyA can fetch these values froBj and the process is complete.

We make two observations about this process. First, if the Merkle treésaiodB differ
only along the right-hand side, then the cost to discover their differdac@&logn), whered is
the number of values in which they differ ands the total number of values they store. Compared
to the cost of the algorithm without Merkle tre&3(n), this is a marked improvement for mostly-
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root in R_I(A) U R_I(B) isi,

fetch children of i,

fetch children of i
(k77 H(V7))’ (k 8> H(Vg))
fetch value (k ¢, H(v )
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Figure 4.4:Replica synchronization with Merkle treddodesA andB differ in the shaded blocks.
NodeA asksB for the root of the Merkle tree that covers their shared raBgesponds, ané asks

for the children of any blocks it doesn’t recognize. This processimoas untilA discovers a leaf

it doesn’t recognize, after which it asksfor the value associated with that leaf. Unlike the basic
form of anti-entropy, which require@(n) communication for two nodes storimgvalues, this form
requires onlyO(dlogn) communication, wherd is the number of differences between the values
the two nodes are storing.
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Before insert:

f(74,3F,53)=0 f(0C,97,40)=0

'~ 74 3F 53 D0 FO 57 F8 78 F5 42 40 46 CC 1C 0C 97 40 DO DB 58

block
After insert:
f(74,3F,53)=0 f(42,40,1A)=0 f(0C,97,40)=(
¢ 1A inserted\/\¢ ¢

*~74 3F 53 DO FO 57 F8 78 F5 42 40 1A 46 CC 1C 0C 97 40 DO DB

block 't block ! d/'
all further blocks unchange

Figure 4.5: Picking block boundaries using Rabin function&n insert may change the block in which
it occurs, split an existing block into two (shown here), ause two existing blocks to be combined; the
remainder of the blocks in a stream remain the same.

synchronized nodes. HowevérandB only realize this cost savings if all of their differences are at
the end of the sorted set @f,H(v)) pairs. A single difference, for example, at the head of this set
will offset the block boundaries in the Merkle tree, causing all leaf andiortbfocks to differ, and

increase the cost back @(n). To fix this problem, we need to find a way to compute the blocks in

the Merkle tree such that they do not change much after insertions.

Picking block boundaries with Rabin functions A Rabin function [Rab81], is a functiof

mappingn one-byte inputs uniformly and randomly to the §@t...,m— 1}. In other words,

n times

——N—
f BxBx---xB—{0,...,m—1}

whereB is the set of possible byte values. We can place a block boundary Wsfrein a file
if the value of f on then bytes proceeding byteis 0. Sincef is uniform and random, we expect
to evaluate it on average times before finding a zero; thus the expected block size from this
technique iam. In addition, we set a minimum and maximum block size (suclng&and 2n) to
avoid choosing blocks that are too small or large. Figure 4.5 shows ampéxaf computing block
boundaries in this manner for= 3. There,f(0C,97,40) = 0O, so the block in the upper half of the
figure ends on byte 40.

The benefit in picking block boundaries by the value of the underlyingigdtastrated in
the lower half of Figure 4.5, where the byte 1A has been inserted into trarstia this example,
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f(42,40,1A) = 0, so this change introduces a new boundary, splitting the original blockan tw
However, sincen = 3, the boundaries of all blocks three or more positions after the chaege ar
unaffected; in particular, the next block still starts with the byte value D@elmeral, the insertion,
modification, or deletion of any byte either changes only the block in whichcitirsg splits that
block into two, or combines that block with one of its neighbors. All other bddokthe stream are
unaffected.

The application of Rabin functions to our anti-entropy problem is straightfad. Given
our sorted set ofk,H(v)) pairs, we pick block boundaries in the set using Rabin functions. Next,
we use Rabin functions again to compute the boundaries of the indirecskdbthe next level up
and continue in this manner until we have only one indirect block at a levelblbik is then the

root of the tree.

Picking block boundaries by prefix Another technique for picking block boundaries is to group
all of the (k,H(v)) pairs with a common prefix into a block. If this block is larger than a certain size,
we lengthen the prefix that a pair must match by one bit, splitting the block into twihid way,

our Merkle tree becomes a trie. Tries also handle insertions and deletiinsate that when we

add a newk,H(v)) pair to a trie or remove an existing one, the only blocks that change are those
that share prefixes with that pair.

Bamboo uses this method of picking block boundaries, as the code for it ifesithan
that using Rabin functions. Furthermore, Bamboo uses 6-bit digits whaputing prefixes for
the following reasons. We can summarize eégcli (v)) pair by its SHA-1 hash, and we can store
64 SHA-1 hashes in a single, 1,500-byte network packet with 220 bytesvierf for headers and
other information. As a result, we can use 6-bit digits in our prefixes§as®4), giving the trie a
branching factor of 64 and reducing its maximum height by a factor of & séh fit each interior

node of the trie into a single network packet.

The choice of sorting order Above we mentioned that it is necessary to sort a nogdeld (v))
pairs before building a Merkle tree over them. Otherwise, two nodes withatine yalues could
produce different trees. Here we show that the sorting order wesehis@lso important.

For example, consider that pairs are sorted in the obvious way, lexigedlgtby the bits
of each(k,H(v)) pair, and consider two nodésandB. Further consider thak temporarily loses
connectivity, perhaps because it crashed, and during this periothbemwf additional tuples are
put into the system. What happens wheregains connectivity and synchronizes its database with
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Figure 4.6:The importance of sort ordefAbove, the (timestamp, key, value) tuples have been sorted
by their keys before building the Merkle tree, and the new blocks—shawenined—are found
through largely distinct paths from the root. Below, the tuples have be&sddoy timestamp, and
the new blocks share most of their paths.

B?

The upper half of Figure 4.6 illustrates this example. Since the keys used firaaie
generally the output of a secure hash function, they are effectivalgechuniformly at random.
They will thus fall in random places in the sorted order and thereby end rgndom leaves of
the Merkle tree. As such, for each mismatched key, several distinct ind&ataéhashes must be
transmitted and compared, at a cost of several round trip times for eacimgnisdue corrected.
Since temporarily losing connectivity is a common reason that nodes fallf @ytnhchronization,
this concern is an important one.

Assume instead that the DHT node at which a put originates timestamps theckeglaa
put as they enter the system, and assume that we nowtdaitt (v)) tuples by their timestamps,
breaking ties using the previous sort order. This change is illustrated iovtlee half of Figure 4.6.
Note that ifA andB were synchronized befor®lost connectivity, then the new values put into the
system whileA was unavailable will all end up in a continuous range of the leaves of th&l®er
tree. Unlike when tuples were sorted by key, then, the differences inNtezkle trees should be
confined to the side with the more recent tuples, and each traversal feoradhto the leaves will
lead to the discovery of many differences, resulting in far fewer raupdimes than before.

Of course, poor clock synchronization can reduce the benefits of tigitpie, but it is
almost inconceivable that it would perform worse than sorting by key-efiheks of the nodes in



67

the DHT would have to be set to random values.

One challenge that does arise in sorting by timestamp is that there must nowsrats
Merkle tree for each shared subrange of the keyspace. When soytkay, each node can build a
single Merkle tree; the differences in the ranges covered by thesentileles discovered during the
process of synchronization. In contrast, when sorting by timestamp,reatehbuildsr — 1 trees,
one for each unique subrange of keys that it shares with its neighbors.

One more slight concern remains: when violations of transitive connecti¥/itye kind
discussed in Chapter 6 occur, nodes will disagree with each other asdb ether nodes should
be in their leaf sets. In such cases, they will also disagree as to the gabrimm which Merkle
trees should be built. Fortunately, any two nodes that can connect tontieessdnset of their proper
neighbors in the DHT will agree about these subranges and will still betals#gnchronize. The
others must wait until the anomaly heals. In practice, such anomalies densittgorever, and we
have not found this limitation to be a problem on our PlanetLab deployment.

4.3.2 Discarding Unwanted Values

As we noted above, as long as one replica in a set contains a value, tvélyealentually.
We must also protect against the case where no replica contains a \@l@en. This circumstance
can occur for a number of reasons. First, a partition in the DHT may cavsle@to be replicated
on the wrong set of hosts; when the partition héalge would like the value to be moved to the
correct set of hosts. Consider Figure 4.7, for example. Normally, tlee tiC Berkeley nodes
are spread around the ring, and none of them af(k); when UC Berkeley’s connection to the
Internet fails, however, they form a three-node ring of their own,ahithree are irR(k). Any puts
on keyk that occur during this period from within Berkeley will thus be stored onlytenBerkeley
nodes. When the partition heals, however, they must be moved to the oiRjk)aleven though
none of the Berkeley nodes are in that set.

The problem of puts that occur during partitions is actually a special datbe anore
general problem of massive join events. Consider again Figure 4.7assuine that originally
the DHT only contained the three Berkeley nodes. Now consider that #tleofirey nodes join
simultaneously. Just as before, some values stored on the Berkeleymadebe moved to replica

sets of which they are not members, motivating the need for an additionahnmisohbeyond replica

2A Bamboo node periodically checks for and corrects the effects ofarktpartitions by trying to rejoin the network
through nodes that were its neighbors in the past but to which it has sitaeplenectivity.
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Figure 4.7:The need for the discard algorithni.he figure on the left shows a Bamboo ring; the
three black nodes are all at UC Berkeley. When Berkeley’s connetditite Internet fails, these
three nodes can no longer communicate with any others, so they assume thdnattecefailed and
form a three-node ring of their own. Any puts on kkeyduring this partition are stored on the
Berkeley nodes. Once the partition heals, however, these values must/d to the originaR(k)
shown on the left. Replica synchronization will not accomplish this movemewg\Ver, as it only
involves communication withiRR(k), and this set no longer includes any of the Berkeley nodes.

synchronizatiors.

To fix this problem, we introduce the the discard algorithm, which allows nodesn
R(K) to safely discard values stored undtetOur original implementation of the discard algorithm
worked as follows: when a node that was no longeR(k) noticed that it was storing a key-value
pair (k,v), it simply re-put it. While this approach is very easy to implement, it is not terribly
efficient; in the case of massive joins described above, each origipladagushes each value to
each new one, leading to@(r?) cost.

A simple optimization for the discard algorithm is as follows: rather than re-palwe
it should no longer be storing, a node sends the value to a random nodedartient replica set.
The current Bamboo implementation uses this procedure. We note that tbéxlpre is efficient,
sending only one message per original replica. It is also reasonahlgtrobonsider a massive
join event, in which all of the original replica set is replaced by new nodekle 4.1 shows the
probability that at leaghnew replicas receive a valuenfld replicas perform the discard algorithm

30ur discovery of this need was actually due to massive join events ast#esbere. Such events were one part of a
larger testing framework we used to debug the early storage manageoaen
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m
1 2 3 4 5 6 7 8
1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.000 0.875 0.000 0.000 0.000 0.000 0.000 0.000
1.000 0.984 0.656 0.000 0.000 0.000 0.000 0.000
1.000 0.998 0.902 0.410 0.000 0.000 0.000 0.000
1.000 1.000 0.974 0.718 0.205 0.000 0.000 0.000
1.000 1.000 0.993 0.878 0.461 0.077 0.000 0.000
1.000 1.000 0.998 0.950 0.670 0.221 0.020 0.000
1.000 1.000 1.000 0.980 0.810 0.389 0.070 0.002

00O~NO Ol h WN K>S

Table 4.1:The effectiveness of the discard algorithfxiter a massive join event, where the entire
original replica set is replaced by new nodes, each original replicdssesch value for which it

is no longer responsible to a random new replica. This table shows thalplitbthat at leasm
new replicas receive a valuerifold replicas perform the discard algorithm. For example, if five old
replicas do so, there is a 71.8% chance that at least four distinct néeasewill receive a value.
(The remaining replicas will eventually get one through the replica synctation process.)

for a system withr = 8. For example, if five old replicas perform the discard algorithm, there is a
71.8% chance that at least four distinct new replicas will receive a vélte remaining replicas

will eventually get one through the replica synchronization process.)

4.4 Handling Mutable Data

DHTSs generally offer only eventually-consistent semantics: if the systetalide, even-
tually all clients will see all values put. Moreover, using insights from theeapid literature, it is
reasonably easy to support some degree of mutable data.

A straightforward approach to making values in the DHT mutable would be Heit e
new value put overrides any previous value under the same key. Whikgpghieach at first sounds
reasonable, it is difficult to implement in the face of concurrent puts to time daey issued from
different nodes.

In special circumstances, however, the problem is tractable: if therts esdme total
ordering over all possible values, DHT nodes can use this orderingtisetbetween them, and so
long as this ordering is a deterministic function of the values themselves, &smothe DHT will
eventually agree as to the current value under each key.

As an example of this approach, a remove operation is implemented in Bamboo in the
following manner. Each value put into the system may contain the SHA-1 Hasbroque secret,
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s. Moreover, we allow a certain class of values callethoves|f a DHT node has a puk,v,H(s)),
and it learns about a removk, H(v),s), it always discards the put in favor of the remove. In this
way, a value can be removed from the system by simply putting a corrésgaednove; in the total
ordering used, removes always dominate their corresponding puts.

Note that if the system did not store removes, removed values could beecsd as
follows. Consider a nodd that crashes, and consider that whlés down a value it is storing
is removed from all remaining replicas. Whé&rcomes back up, the replica synchronization and
discard protocols will propagate the value back oAoneighbors, effectively re-inserting it into
the system. By storing the remove like any other value, and by always fpngfarremove over its
associated put, we prevent such resurrections.

We discovered the idea of removes from the epidemic literature, where tbayabed
death certificate§DGH"87]. That literature also contains a caution: a DHT node cannot discard
any remove for which a put may still remain in the system. Since puts may exisasineti nodes
that cannot be contacted, discarding a remove must thus be done withrc&amboo, all values
put into the system contain a time-to-live (TTL), and a node discards a wddar this time passes.
To safely remove a value, then, one must simply assure that the TTL foravesis longer than the
TTL remaining for its corresponding put.

45 Related Work

We developed the Bamboo replica synchronization and discard algorithmsrcently
with, but independently from, Cates [Cat03], who was working on the BHgstem at the time.
Our replica synchronization algorithm is virtually identical to his local mainteaaigorithm, and
our discard algorithm is virtually identical to his global maintenance algorithmceS@ates was
working on ChordR(k) corresponds to thesuccessors df, rather than the/2 predecessors and
successors of it. Also, DHash uses erasure codes instead of replitaticedundancy. For the
purposes of this chapter, these differences are largely irrelevaméyiea

Our use of Merkle trees in synchronization followed from our use of tler®ond
[REG'03], the OceanStore [KB@O] prototype. Pond is a versioned file system, and it uses Merkle
trees to certify the contents of each version and to prevent storing gatddietween multiple ver-
sions multiple times. These same Merkle trees can be used to detect difebetaeen versions,
and that feature lead to our insight that they could be used for synchtmmizn Bamboo.

At the time, we had also just finished our work on Value-Based Web Ca¢Ring03],
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where we used Rabin functions to chose block boundaries for effaigricate transfer elimination
in HTTP. (Rabin functions have also been used elsewhere for similapgespincluding in file
systems [MCMO1] and packet-level network compression [SWO00].) Weldped the first replica
synchronization algorithm in Bamboo by combining Merkle trees and Rabgtitins as described
in this chapter.

Messages from the OceanStore developers’ mailing list [Rhe03a, Bhsd@w that we
had the basics of replica synchronization and the discard algorithm vgorkithe Bamboo code
base on April 18, 2003. Shortly thereafter, in May 2005, Cates’ theass published, and we
realized he had come up with a very similar solution to roughly the same probleter. rahding
his thesis, we switched from using Rabin functions to using tries to pick blookdaries, but we
made no other changes to our algorithms.

A remaining difference between DHash and Bamboo is that DHash soressviajukey
rather than timestamp. As discussed above, we believe this is less efficieom/yintuitively so;

we have not compared the two in simulation, for example.

4.6 Future Work

Above we have discussed the existing Bamboo storage layer. In this se&ipresent

several improvements we plan to make in the future.

4.6.1 A Better Discard Algorithm

We have shown through analysis that the existing discard algorithm in Bawidrés well
when none of the original replicas for a value remain in the replica setafteassive join event.
However, in that analysis we assumed that all original replicas suruigedoough to discard each
value for which they are no longer responsible. In the case that the DBfbrisig many values,
however, some replicas may leave the system before transferring adlioétate.

Consider that only one original replica survives long enough to parfbe discard algo-
rithm for a value. In the existing algorithm, only a single new replica will reeéhe value, and the
system will be vulnerable to a single failure until the replica synchronizatigorigthm copies the
value across the replica set.

A better algorithm for discarding values is clear from the epidemic literaturee iivare
to use rumor-mongering with = 1 for discarding values, each original node would continue to



72

send a value to new replicas until finding one that already has the valdie#ah node that receives
a value would do the same). According to the epidemic literature, this changld imarease the
fraction of new replicas that receive a value in this example to 80% on w@tfet, for only a traffic
cost of 174r. Moreover, in the case where all of the original replicas survive, #fédrcost would
still only increase over the existing algorithm by this constant factor. Wesbeghis change as a
promising one for Bamboo (as well as DHash).

4.6.2 Accounting for Spatial Distributions

In our analysis above, we have ignored the fact that some nodes iticaregt are closer
to each other in network latency than others. Since the replica synchiionizégorithm requires
multiple round trips, nearby replicas should be able to synchronize morklgthean remote ones.
Also, synchronizing nearby replicas uses less total network resulcgeneral, then, we would
prefer to synchronize nearby members of each replica set more oftere @re limits to which this
general goal can be achieved and still produce timely convergentcthebresults in the epidemic
literature are nonetheless surprising.

Consider a system where all the hosts lie along a linear network. If easthdtks only
to its immediate neighbors, the number of cycles to converge using anti-emsr@gi), and the
average convergence traffic per link per cycl®id). On the other hand, if each host chooses its
anti-entropy partners randomly, convergence happe@glogN) cycles and the traffic per link per
cycle isO(N). These two strategies represent extreme choices in replica selection.

Kempe, Kleinberg, and Demers showed that there is also a middle grourtthdts ar-
ranged with uniform density in Euclidean space, they proved that usipg@as selection criteria
a new tuple introduced at one host will reach all hosts within distdraféts origin in O(log'*¢d)
time [KKDO1]. In practice, the effects of such spatial bias can be dramadiog a topology mod-
eled on the Xerox corporate intranet, Demers et al. showed that byinbasti-entropy partners
according to distance, convergence time increased by less than a fagtonehile reducing traffic
across a bottleneck trans-Atlantic link by over a factor of 30.

Unlike with routing table neighbors, the members of a node’s leaf set carrabtosen for
proximity; they are instead fixed by a node’s position in the ring. As suchjiewe spatially-aware
epidemics as a promising technique for reducing the load imposed by congistfic in DHTSs.
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4.6.3 Further Reducing the Cost of Temporary Failures

As discussed in Chapter 2, every time a hode permanently leaves the DHTysteopy
data to other nodes in order to restore replication. Furthermore, whenou®s join, existing nodes
will no longer be responsible for some of the data they are storing, anddéftarrding that data to
new nodes, they can delete it from their local storage.

A problem with current algorithms, however, is that they do not distinguesimpnent
failures from temporary ones. If a node goes offline temporarily, the BiiTbegin re-replicating
all of the data it stored immediately. If this node then recovers, this replicatédiictwill have
merely wasted resources. A related problem is that of a short join: whmwanode joins the
DHT, replicas are moved onto it and deleted from existing nodes; if the oel® departs shortly
thereafter, replicas will have to be recreated on the same nodes thatlpistdidhem.

Although it is not possible to precisely distinguish temporary failures fronmpaent
ones, we can approximate the distinction by introducimgpair threshold[BTC04]: by setting
an original replication factor af, but only re-replicating data when the available redundancy falls
below somen < n, we can prevent many temporary failures from triggering repair.

The DHash group has recently developed an interesting adaptation ofdhitidtorage
management algorithms like those used in DHash and Bamboo [DS]. Thepw@ssuming the
system has a roughly constant size over time, and by assuming each padeisthe system some
fractiona of the time. They then assume that no node ever removes a replica from Itsttoege,
and they modify the replica synchronization algorithm to only create a nelicadpr a value if
less tharr are available in ther2closest nodes in the ring. Using this technique, they show that the
expected degree of replication per value converges ta, 2 reasonable cost for a system such as
PlanetLab where each node has relatively high availability.

In such a system, a temporary failure of a single node causes no data nmbveress
it causes the number of replicas for an item to fall betow.ikewise, when a new node joins, no
data is moved onto it unless its join pushes enough replicas out of ttlesest nodes to some key
to cause the replication factor to fall belawIn both cases, it is unlikely that data will be moved,
reducing much of the cost incurred by the current design due to tenydaitares and joins.

One complication of this design is that the replica synchronization algorithm baust
modified to keep track ofvhich r or more nodes are storing each value. In DHash, this is imple-
mented by storing that information locally with the values. Furthermore, if thicegion factor

for an item is greater than no new replicas should be created. To prevent their creation, nodes
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that have replicas of some value must hide this fact from those that dairingdeplica synchro-
nization. (Otherwise, the latter will pull a copy from the former upon disdagethey are missing
each such value.) In DHash, this hiding is accomplished by building a sepdeskle tree for each
neighbor, increasing the memory cost of storing the Merkle trees by a fai@o. Because this cost
is too high, DHash now builds Merkle trees on demand, reducing how ofternsonization can be
performed, and only synchronizes with a few neighbors at a time.
Despite the additional difficulties involved in implementing this extension to replica sy

chronization, we are still in favor of it, as it saves a great deal of battywvhich is usually the
limiting resource in a DHT.

4.6.4 Controlled Performance Studies

One limitation of this chapter is that we have yet to perform a careful stuttyeoéffec-
tiveness of the techniques described here. There are severahseas have not done so. First,
Cates performed a study of the DHash algorithms in his work, and our algridine quite simi-
lar to those, so a performance study seems at least a little redundantaithét would be nice to
compare the relative benefits of sorting values by timestamp rather thanda@nd our algorithms
seem to work in practice. As we will show in a Chapter 5, our OpenDHT gepdmt on 200-300
PlanetLab seems to store data effectively despite the churn it experidfinafly, a performance
evaluation has simply been low on our list of priorities. The latency of gatatipes on OpenDHT,
for example, matters much more to our users at the moment (see Chapter fHle #\stem be-
comes more popular and stores more and more data, however, the effiaighe storage system
will become important. At that point we hope to profile the system as it standsya also plan to
implement and test the performance optimizations listed above.

4.7 Summary and Discussion

In this chapter we have shown a successful combination of DHTs anérejudalgo-
rithms. We believe the two are a natural match. Epidemic algorithms provide strefficient, and
simple way to maintain consistency between replicas, but do not naturallgi@gystem in which
each data value is replicated by only a subset of nodes. In contrasts pigvide a partitioning
suitable for choosing a set of replicas for each data value in a systemgduuite an algorithm for
maintaining their consistency.
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We are not the first to recognize the value of partitioning a large system to lienitetiree
of replication; Demers et al. noted it in their work. We believe we were thdirsote the utility of a
DHT for this purpose, however. As far as we can tell, while Cates cleadd epidemic techniques,
he appears to have been unaware of the epidemic literature and wasrdlypanaware of their
status as such. Moreover, while the Kelips [GRI3] system uses epidemic techniques to build a

DHT lookup layer, they do not discuss the application of these techniqueplioa management.
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Chapter 5

OpenDHT

In Chapters 3 and 4, we presented the design and implementation of the lan#up
storage layers of a DHT. By going to the Bamboo web page and downlo#uisg components,
would-be application developers obtain a useful building block on whicbnstcuct their systems.
Nonetheless, maintaining a running DHT remains non-trivial. At least witheatitechnology;,
DHT nodes cannot run behind NATSs, so a group of machines on the dabdimet on which to
run the DHT must be acquired. Scripts must be written to keep the DHT caouhéngion these
machines, and someone must be around to reboot them in case theyreg@&genel bugs or fix
them when they experience hardware failures.

As DHT-based applications proliferate, it is thus natural to ask whetlegy epplication
needs its own DHT deployment, or whether a shared deployment could asrtbisoperational ef-
fort across many different applications. While some applications do imfake extremely sophis-
ticated use of DHTs, many more access them through such a narrowdeténtd it is reasonable
to expect they might benefit from a shared infrastructure.

In this chapter, we report on our efforts to design and build OpenDBimérly named
OpenHash [KRRS04]), a shared DHT deployment. Specifically, olrigt@aprovide a free, public
DHT service that runs on PlanetLab{B4] today. Longer-term, as we consider later in this chap-
ter, we envision that this free service could evolve into a competitive comrheraiket in DHT
service.

Figure 5.1 shows the high-level architecture of OpenDHT. Infrastraatodes run the
OpenDHT server code. Clients are nodessidethe set of infrastructure nodes; they run application
code that invokes the OpenDHT service using RPC. Besides participatimg PHT'’s routing and

storage, each OpenDHT node also acts gatawaythrough which it accepts RPCs from clients.
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Figure 5.1: OpenDHT Architecture.

Because OpenDHT operates on a set of infrastructure nodes, lwedipp need concern
itself with DHT deployment, but neither can it run application-specific codthese infrastructure
nodes. This is quite different than most other uses of DHTs, in which th& Bddle is invoked
as a library on each of the nodes running the application. The librarpapipis very flexible, as
one can put application-specific functionality on each of the DHT nodesdrh application must
deploy its own DHT. The service approach adopted by OpenDHT dffierspposite tradeoff: less
flexibility in return for less deployment burden. OpenDHT provides a hamagpplications more
suited to this compromise.

The service approach not only offers a different tradeoff; it aleseg different design
challenges. Because of its shared nature, building OpenDHT is notriee aamerely deploying
an existing DHT implementation on PlanetLab. OpenDHT is shared in two diffsesses: there
is sharing both among applications and among clients, and each raises agigwmoblem.

First, for OpenDHT to be shared effectively by many different applicetjdts interface
must balance the conflicting goals of generality and ease-of-use. &ignsrnecessary to meet the
needs of a broad spectrum of applications, but the interface shoultb@lsasy for simple clients
to use. Ease-of-use argues for a fairly simple primitive, while generalitthGrextreme) suggests
giving raw access to the operating system (as is done in Planétllais)hard to quantify both ease-
of-use and generality, so we rely on our early experience with Openaptlications to evaluate
our design decisions. Not knowing what applications are likely to emergean only conjecture
about the required degree of generality.

Second, for OpenDHT to be shared by many mutually untrusting clients witheirt

10ne might argue that PlanetLab solves the problems we are posing Wigipgoextreme resource control and a
general interface. But PlanetLab is hard for simple clients to use, invkay application must install software on each
host and ensure its continued operation. For many of the simple appleat®mescribe in Section 5.4.3, this effort
would be inappropriately burdensome.
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unduly interfering with each other, system resources must be allocatedaméhWhile ample prior
work has investigated bandwidth and CPU allocation in shared settinggesttacation has been
studied less thoroughly. In particular, there is a delicate tradeoff betfag®ess and flexibility:
the system shouldn’t unnecessarily restrict the behavior of clients bysimgarbitrary and strict
guotas, but it should also ensure that all clients have access to theindagr of service. Here we
can evaluate prospective designs more quantitatively, and we do so tétisie simulations.

We summarize our solutions to these two design problems in Section 5.1. We then ad
dress in significantly more detail the OpenDHT interface (Section 5.2) arabst@llocation algo-
rithm (Section 5.3). Section 5.4 describes our early deployment experiboth in terms of raw
performance and availability numbers, and the variety of applications tlyrigsing the system.
Section 5.5 concludes with a discussion of various economic concernsdlyaaffect the design
and deployment of services like OpenDHT.

5.1 Overview of Design

Before delving into the details of OpenDHT in subsequent sections, weléissribe the
fundamental rationale for the designs we chose for the system’s inteafatstorage allocation

mechanism.

5.1.1 Interface

In designing OpenDHT, we have the conflicting goals of generality aretefsse (which

we also refer to as simplicity). There are three broad classes of inteifattee DHT literature, and
they each occupy very different places on the generality/simplicity spediuslightly different
taxonomy is described in [DZD03]). Given a key, these interfaces provide three very different
capabilities:
routing Provides general access to the DHT node responsible for the inpuarkeyo each node

along the DHT routing path.
lookup Provides general access to the DHT node responsible for the input key

storage Directly supports the put(key, value) and get(key) operations by rothigm to the DHT

node responsible for the input key, but exposes no other interface.

Therouting model is the most general interface of the three; a client is allowed to invoke
arbitrary code at the endpoint and at every node along the DHT pathdswaat endpoint (either
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through upcalls or iterative routing). This interface has been useful itemgnting DHT-based
multicast [CDK"03a] and anycast [ZHD4].

The lookupmodel is somewhat less general, only allowing code invocation on the end-
point. This has been used for query processing [FiBi§], file systems [DKK 01, MMGCO02], and
packet forwarding [SAZ02].

The true power of the routing and lookup interfaces lies in the applicatieafgpcode
running on the DHT nodes. While the DHT provides routing to the appropnatkes, it is the
application-specific code that does the real work, either at each hauen(routing) or only at the
destination (lookup). For example, such code can handle forwardipgaiiets (e.g., multicast and
i3 [SAZ"02]) or data processing (e.g., query processing).

The storagemodel is by far the least flexible, allowing no access to application-specific
code and only providing the put/get primitives. This lack of flexibility greatly limits $#pectrum
of applications it can support, but in return this interface has two advesitagis simple for the
service to support, in that the DHT infrastructure need not deal with tharies of application-
specific code running on each of its nodes, and it is also simple for applicé¢ieelopers and
deployers to use, freeing them from the burden of operating a DHT alhémey want is a simple
put/get interface.

In the design of OpenDHT, we place a high premium on simplicity. We want aasnf
tructure that is simple to operate, and a service that simple clients can useth&hstorage model,
with its simple put/get interface, seems most appropriate. To get around its limitetiohality,
we use a novel client library, Recursive Distributed Rendezvous if®eBvhich we describe in
detail in Section 5.2.2. ReDIR, in conjunction with OpenDHT, provides thevatprit of a lookup
interface for any arbitrary set of machines (inside or outside OpenDHdif)itsThus clients using
ReDiR achieve the flexibility of the lookup interface, albeit with a small loss fadiehcy (which
we describe later).

Our design choice reflects our priorities, but one can certainly imagine dtlé&es. For
instance, one could run a shared DHT on PlanetLab, with the DHT provitlimgouting service
and PlanetLab allowing developers to run application-specific code ondadl nodes. This would
relieve these developers of operating the DHT, and still provide them witheaflexibility of the
routing interface, but require careful management of the applicaticrifgpeode introduced on
the various PlanetLab nodes. We hope others explore this portion of signdgace, but we are
primarily interested in facilitating simple clients with a simple infrastructure, and schese a

different design.
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While there are no cut-and-dried metrics for simplicity and generality, eaijepce
suggests we have navigated the tradeoff between the two well. As webdeiscgreater detail in
Section 5.4.1, OpenDHT is highly robust, and we firmly believe that the relsitimplicity of the
system has been essential to achieving such robustness. While gengrsilityiarly difficult to
assess, in Table 5.4 we offer a catalog of the diverse applications b@penDHT as evidence of
the system’s broad utility.

5.1.2 Storage Allocation

OpenDHT is essentially a public storage facility. As observed in [RHO3, B8] Hf such
a system offers the persistent storage semantics typical of traditionaydtienss, the system will
eventually fill up with orphaned data. Garbage collection of this unwantedsgéams difficult to do
efficiently. To frame the discussion, we consider the solution to this probtepoped as part of the
Palimpsest shared public storage system [RH03]. Palimpsest used aavoiéng-door technique
in which, when the disk is full, new stores push out the old. To keep theirdl#te system, clients
re-put frequently enough so that it is never flushed; the requirgulireate depends on the total
offered load on that storage node. Palimpsest uses per-put chasgdiiedp in this model becomes
an elegantly simple form of congestion pricing to provide fairness betwsers (those willing to
pay more get more).

While we agree with the basic premise that public storage facilities should oadpr
unboundedly persistent storage, we are reluctant to require clients tisomtbre current offered
load in order to know how often to re-put their data. This adaptive monitasicgmplicated and
requires that clients run continuously. In addition, Palimpsest relies agiogato enforce some
degree of fairness; since OpenDHT is currently deployed in an emaigahwhere such charging is
both impractical and impolitic, we wanted a way to achieve fairness without @lici&>economic
incentive.

Our goals for the OpenDHT storage allocation algorithm are as follows, trsimplify
life for its clients, OpenDHT should offer storage with a definite time-to-livEL(L A client should
know exactly when it must re-store its puts in order to keep them storedttser than adapting (as
in Palimpsest), the client can merely set simple timers or forget its data altogétiferifistance,
the application’s need for the data will expire before the data itself).

Second, the allocation of storage across clients should be “fair” withwokiing explicit
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charging. By fair we mean that, upon overload, each client has “eqoedsa to storageMoreover,
we also mean fair in the work-conserving sense; OpenDHT should allofulfautilization of the
storage available (thereby precluding quota-like policies), and shostidcteclientsonly when it is
overloaded.

Finally, OpenDHT should prevertarvationby ensuring a minimal rate at which puts
can be accepted at all times. Without such a requirement, the system couliteldi its storage
(fairly) for an arbitrarily long TTL, and then reject all storage requéstshe duration of that TTL.
Such “bursty” availability of storage would present an undue burde@menDHT clients.

In Section 5.3 we present an algorithm that meets the above goals.

The preceding was an overview of our design. We next consider ttalsdef the
OpenDHT client interface, and thereafter, the details of storage allodgatOpenDHT.

5.2 Interface

One challenge to providing a shared DHT infrastructure is designing arfaicgéethat
satisfies the needs of a sufficient variety of applications to justify the dlu@oyment. OpenDHT
addresses this challenge two ways. First, a put/get interface makes wirttipig sipplications easy
yet still supports a broad range of storage applications. Second glué aslient-side library called
ReDiR allows more sophisticated interfaces to be built atop the base put/gitdetdn this section

we discuss the design of these interfaces. Section 5.4 presents theimaerte and use.

5.2.1 The put/get API

The OpenDHT put/get interface supports a range of application needssforage in the
style of the Cooperative File System (CFS) [DK&1] to naming and rendezvous in the style of the
Host Identity Protocol (HIP) [MNJHO4] and instant messaging.

The design goals behind the put/get interface are as follows. First, simgeDb{l
applications should be simple to write. The value of a shared DHT rests indargen how easy
it is to use. OpenDHT can be accessed using either Sun RPC over TAQRLORRC over HTTP;
as such it easy to use from most programming languages and worksdtindbmost firewalls and
NATs. A Python program that reads a key and value from the consdlpats them into the DHT

2As in fair queuing, we can of course impose weighted fairness, wioene slients receive a larger share of storage
than others, for policy or contractual reasons. We do not pursue #ashidre, but it would require only minor changes
to our allocation mechanism.
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is only nine lines long; the complementary get program is only eleven.

Second, OpenDHT should not restrict key choice. Previous schemeasithentication
of values stored in a DHT require a particular relationship between the aaldi¢he key under
which it is stored (e.g., [DKKO01, DR01]). Already we know of applications that have key choice
requirements that are incompatible with such restrictions; the prefix hasiiPrEe [RRHS04,
CRR'05] is one example. It would be unwise to impose similar restrictions on futymégapons.

Third, OpenDHT should provide authentication for clients that need it. Atfiexy wish
to verify that an authorized entity wrote a value under a particular key oroteqt its own values
from overwriting by other clients. As we describe below, certain attacksatdre prevented without
support for authentication in the DHT. Of course, our simplicity goal dersainat authentication
be only an option, not a requirement.

The current OpenDHT deployment meets the first two of these design @oalslicity
and key choice) and has some support for the third (authenticationhdtifallows, we describe the
current interface in detail, then describe two planned interfaces that batiport authentication.
Table 5.1 summarizes all three interfaces. Throughout, we refer to GpERBysS byk; these are
160-bit values, often the output of the SHA-1 hash function (denoteld )hyhough applications
may assign keys in whatever fashion they choose. Values, demo#ed variable-length, up to a
maximum of 1 kB in size. All values are stored for a bounded time period ordlieat specifies
this period either as a TTL or an expiration time, depending on the interface.

Finally, we note that under all three interfaces, OpenDHT provides aelgtaal consis-
tency. In the case of network partitions or excessive churn, the systgnfail to return values that
have been put or continue to return values that have been removedfdotpdock synchronization
in the DHT may also cause values to expire at some replicas before otla@iaglemall windows
where replicas return different results. While such temporary inconsistein theory limit the set
of applications that can be built on OpenDHT, they have not been a pndbldate.

The Current Interface

A put in OpenDHT is uniquely identified by the triple of a key, a value, and tHA-S
1 hash of a client-chosen random secret up to 40 bytes in length. If multipéehpve the same
key and/or value, all are stored by the DHT. A put with the same key, vahesecret hash as an
existing put refreshes its TTL. A get takes a key and returns all vatoesdsunder that key, along
with their associated secret hashes and remaining TTLs. An iterator oeadgrovided in case



Procedure

Functionality

put(k,v,H(s),t)

Write (k,v) for TTL t;
can be removed with secrgt

get k) returns{(v,H(s),t)}

Read allv stored undek;
returned value(s) unauthenticats

removek,H(v),st)

Remove(k,Vv) put with secres,
t > than TTL remaining for put

1%

put-immutk, v,t)

Write (k,v) for TTL t;
immutable(k = H(v))

get-immutk) returns(v,t)

Readv stored undek;
returned value immutable

put-auth(k,v,n,t,Kp,0)

Write (k,v), expires at;

public keyKp; private keyKs;
can be removed using nonog
o= {H(k,v,n,t) }ks

get-autlik,H (Kp)) returns{(v,n,t,o0)}

Readv stored unde(k, H(Kp));
returned value authenticated

remove-auttk,H (v),n,t,Kp,0)

Remove(k,Vv) with noncen,
parameters as fguut-auth

Table 5.1: The put/get interfackl(x) is the SHA-1 hash of.
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there are many such values.

To remove a value, a client reveals the secret whose hash was pravitthedput. A put
with an empty secret hash cannot be removed. As discussed in ChapmerDHT stores removes
like puts, but a DHT node discards a gitv,H(s)) for which it has a corresponding remove. To
prevent the DHT's replication algorithms from recovering this put whendhsove’s TTL expires,
clients must ensure that the TTL on aremove is longer than the TTL remainithg aorresponding
put. Once revealed in a remove, a secret should not be reused imgabseuts. To allow other
clients to remove a put, a client may include the encrypted secret as pagtymitts value.

To change a value in the DHT, a client simply removes the old value and puts anee
In the case where multiple clients perform this operation concurrentlyralevew values may end
up stored in the DHT. In such cases, any client may apply an applicatemifispconflict resolution
procedure to decide which of the new values to remove. So long as thsdonecis a total ordering
of the possible input values, it does not matter which client performs theves(or even if they
all do); the DHT will store the same value in the end in all cases. This appisaimilar to that
used by Bayou [PST97] to achieve eventual consistency.

Since OpenDHT stores all values put under a single key, puts are Bgmiastsquatting
in that there is no race to put first under a valuable key (El.¢fcoca-cola.comy). To allow others
to authenticate their puts, clients may digitally sign the values they put into the DHfTe lcurrent
OpenDHT interface, however, such values remain vulnerable to a ddrsakvice attack we term
drowning a malicious client may put a vast number of values under a key, all of whilthe
stored, and thereby force other clients to retrieve a vast number ottbadhvalues in the process
of retrieving legitimate ones.

Planned Interfaces

Although the current put/get interface suffices for the applications boilOpenDHT
today, we expect that as the system gains popularity developers will pedtection against the
drowning attack. Since this attack relies on forcing legitimate clients to sortghrobaff values
put into the DHT by malicious ones, it can only be thwarted if the DHT can neizegand reject
such chaff. The two interfaces below present two different wayh®bDHT to perform such access

control.

Immutable puts: One authenticated interface we plan to add to OpenDHT is the immutable
put/get interface used in CFS [DKHK1] and Pond [REGO03], for which the DHT only allows
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puts wherek = H(v). Clearly, such puts are robust against squatting and drowning. Immptatslie
will not be removable; they will only expire. The main limitation of this model is thaggtricts an

application’s ability to choose keys.

Signed puts: The second authenticated interface we plan to add to OpenDHT is one vethees
put are certified by a particular public key, as used for root blocks i8.Qfthese puts, a client em-
ploys a public/private key pair, denot&g andKs, respectively. We cal (Kp) the authenticator

In addition to a key and value, each put includes: a nantteat can be used to remove
the value later; an expiration timién seconds since the epodf itself; ando = {H (k,v,n,t) }kq,
where{X}, denotes the digital signing o with Ks. OpenDHT checks that the digital signature
verifies usingKp; if not, the put is rejected. This invariant ensures that the client thatsspot
knowsKs.

A get for an authenticated put specifiesth kandH (Kp), and returns only those values
stored that match botkandH (Kp). In other words, OpenDHT only returns values signed by the
private key matching the public key whose hash is in the get request. Cliegtshoma protect
themselves against the drowning attack by telling the DHT to return only valyresdsby an entity
they trust.

To remove an authenticated put witk,v,n), a client issues a remove request with
(k,H(v),n). As with the current interface, clients must take care that a remove exitegsthe
corresponding put. To re-put a removed value, a client may use a nesemc# n.

We use expiration times rather than TTLs to prevent expired puts from bepigyed
by malicious clients. As with the current interface, puts with the same key ahératicator but
different values will all be stored by the DHT, and a new put with the sameskghenticator, value,
and nonce as an existing put refreshes its TTL.

Authenticated puts in OpenDHT are similar to those used for public-key biock§S
[DKK *01], for sfrtagsin SFR [WBSO04], forfileldsin PAST [DR0O1], and for AGUIDs in Pond
[REG'03]. Like SFR and PAST, OpenDHT allows multiple data items to be stored usirgathe
public key. Unlike CFS, SFR, and PAST, OpenDHT gives applications fodgadom over key

choice (a particular requirement in a generic DHT service).

5.2.2 ReDIiR

While the put/get interface is simple and useful, it cannot meet the needsapfdita-
tions. Another popular DHT interfaceli@okup which is summarized in Table 5.2. In this interface,
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Procedure Functionality
join(host id, namespace| adds host id) to the list of hosts
providing functionality ofnamespace
lookupgkey, namespace | returns bost id) in namespace
whoseid most immediately followgey

Table 5.2: The lookup interface provided using ReDIR.

nodes that wish to provide some service—packet forwarding, for ebearjpin a DHT dedicated
to that service. In joining, each node is associated with an ideniifiehosen from &ey space
generally[0 : 2169). To find a service node, a client performs a lookup, which takes a kesecho
from the identifier space and returns the node whose identifier most immediatelys the key;
lookup is thus said to implement the successor relation.

For example, in3 [SAZ"02], service nodes provide a packet forwarding functionality to
clients. Clients create (key, destination) pairs called triggers, where stieakion is either another
key or an IP address and port. A triggérd) is stored on the service node returneddykup (k),
and this service node forwards all packets it receives forkkeyd. Assuming, for example, that
the nodedA throughF in Figure 5.2 areé3 forwarding nodes, a trigger with kéy < k < C would
be managed by service noGe

The difficulty with lookup for a DHT service is the functionality implemented by #hos
nodes returned by the lookup function. Rather than install applicatiorifgpiinctionality into
the service, thereby certainly increasing its complexity and possibly reglitsimobustness, we
prefer that such functionality be supported outside the DHT, while leimgape DHT itself to
perform lookups. OpenDHT accomplishes this separation through thefselient-side library
called ReDiR. (An alternative approach, where application-specifie cogy only be placed on
subsets of nodasithin the DHT, is described in [KRO4].) By using the ReDIR library, clients can
use OpenDHT to route by key among these application-specific nodesevdgvecause ReDiR
interacts with OpenDHT only through the put/get API, the OpenDHT segiderimplementation
retains the simplicity of the put/get interface.

A DHT supporting multiple separate applications must distinguish them somehow;
ReDiR identifies each application by an arbitrary identifier, calledhémespace Client nodes
providing application-specific functionality join a namespace, and othettglEforming lookups
do so within a namespace. A ReDIR lookup on identiigr namespaca returns the node that has

joinedn whose identifier most immediately follovis
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Level O B F
Level 1 B E,F
Level 2 D E
Level 3 D
Client keys —® o o —eo o ———
Client addresses  p B C D E F

Figure 5.2: An example ReDiR tree with branching factoet2. Each tree node is shown as a
contiguous line representing the portion of the key space covered byptlee Bach node is further
subdivided into two intervals separated by a tick. The names of registpm@itation hosts A
throughF) are shown above the tree nodes at which they would be stored.

A simple implementation of lookup could be achieved by storing the IP addrasses
ports of all nodes that have joined a namespageder keyn; lookups could then be performed by
getting all the nodes under keyand searching for the successor to the key looked up. This imple-
mentation, however, scales linearly in the number of nodes that join. To impldookup more
efficiently, ReDiR builds a two-dimensional quad-tree of the nodes that joitved and embeds it
in OpenDHT using the put/get interfaeJsing this tree, ReDiR performs lookup in a logarithmic
number of get operations with high probability, and by estimating the tree’s©ihbagsed on past
lookups, it reduces the average lookup to a constant number of gaisjiag client IDs are chosen
uniformly at random.

The details are as follows: each tree node is list of (IP, port) pairs faibaes of the
clients that have joined the namespace. An example embedding is shown ie FiguEach node
in the tree has &vel where the root is at level 0, its immediate children are at level 1, etc. Given
a branching factor ob, there are thus at mobt nodes at levei. We label the nodes at any level
from left to right, such that a paifi, j) uniquely identifies thgth node from the left at levdl,
and 0< j < b'. This tree is then embedded in OpenDHT node by node, by putting the Vaie(s
node(i, j) at keyH(nsi, j). The root of the tree for the8 application, for example, is stored at
H(“i3",0,0). Finally, we associate with each no@gj) in the treeb intervals of the DHT keyspace
[2160b—i(j +8), 216%-i(j 4 b’—gl)) for0< bl <b.

We sketch the registration process here. Ddfiigk) to be the (unique) interval at levél

that encloses kely. Starting at some leveékigrtthat we define later, a client with identifigrdoes

3The implementation of ReDiR we describe here is an improvement on euiops algorithm [KRRS04], which
used a fixed tree height.
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an OpenDHT get to obtain the contents of the node associated Wi vi). If after addingv

to the list of (IP, port) pairs,Vv; is now the numerically lowest or highest among the keys stored in
that node, the client continues up the tree towards the root, getting the oabtehperforming an
OpenDHT put in the nodes associated with each intdiVgtgrt— 1, Vi), | (/start— 2,Vi), - .., until

it reaches either the root (level 0) or a level at whiglis not the lowest or highest in the interval.
The idea is that there is one interval for each of a node’s children, anidhtlinterval of a node
contains only the highest and lowest entries of the eittirehild.

After walking up the tree in this manner, the client also walks down the treeghrou
the tree nodes associated with the interVédgigrt Vi), | ({start+ 1. Vi), - . ., at each step getting the
current contents, and putting its addresg it the lowest or highest in the interval. The downward
walk ends when it reaches a level in which it is the only client in the intervahlFirsince all state
is soft (with TTLs of 60 seconds in our tests), the entire registration peoisgepeated periodically
until the client leaves the system.

A lookup (ns k) is similar. We again start at some levek /siqrt At each step we get

the current intervall(¢,k) and determine where to look next as follows:

1. If there is no successor @fstored in the tree node associated with k), then its successor

must occur in a larger range of the keyspace, so wé sef — 1 and repeat, or fail if = 0.

2. If kis sandwiched between two client entries (A k), then the successor must lie somewhere

in1(¢,k). We set/ — ¢+ 1 and repeat.

3. Otherwise, there is a clieststored in the node associated witft, k) whose identifiers
succeedg, and there are no clients with IDs betwdeandvs. Thus,vs must be the successor

of k, and the lookup is done.

A key point in our design is the choice of starting le¥glgrt Initially /stgrtis set to a
hard-coded constant (2 in our implementation). Thereafter, for retstsa clients takésigrito be
the lowest level at which registration last completed. For lookups, clieatsaehe levels at which
the last 16 lookups completed and takgrito be the mode of those depths. This technique allows
us to adapt to any number of client nodes while usually hitting the correth §€pse 3 above) on
the first try.

We present a performance analysis of ReDiR on PlanetLab in Section 5.4.2.
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5.3 Storage Allocation

In Section 5.1.2, we presented our design goals for the OpenDHT stallagation al-
gorithm: that it provide storage with a definite time-to-live (TTL), that it allodht storage fairly
between clients and with high utilization, and that it avoid long periods in whictpace is avail-
able for new storage requests. In this section we describe an algorithrBpaae-Time (FST), that
meets these design goals. Before doing so, though, we first considehbtices we made while
defining the storage allocation problem.

First, in this initial incarnation of OpenDHT, we equate “client” with an IP addri@poof-
ing is prevented by TCP’s three-way handshake). This technique ibydi@perfect: clients behind
the same NAT or firewall compete with each other for storage, mobile clientsorprire more stor-
age than others, and some clients (e.g., those that own class A addiess) sppa acquire virtually
unlimited storage. To remedy this situation, we could clearly use a more sopiedtivation of
client (person, organization, etc.) and require each put to be authedtiizthe gateway. However,
to be completely secure against the Sybil attack [Dou02], this change wequde formal identity
allocation policies and mechanisms. In order to make early use of OpenDEdsgsas possible,
and to prevent administrative hassles for ourselves, we chose to gtathezmuch more primitive
per-IP-address allocation model, and we hope to improve on it in the fublioee generally, we
discuss in Section 5.5 how our current free service could transition tanpetitive commercial
market in DHT service.

Second, OpenDHT is a large distributed system, and at first one might thdhk thair
allocation mechanism should consider the global behavior of every clientdll of their puts).
While tracking global behavior in this way presents a daunting problem, itastiaéscase that the
capacity constraints of OpenDHT are per-node, in the form of finite diplacities, so the situation
is even more complicated.

We note that OpenDHT cannot avoid providing some notion of per-diskdag in allo-
cation. For example, a common use of the system is for rendezvous, avgevep of cooperating
clients discover each other by putting their identities under a commorkkeyith a strictly global
model of fairness, a malicious client could disrupt this rendezvous by fillieglisk onto whichk
is mapped, so long as it remained below its globally fair allocation. A per-dislehuddairness, in

contrast, promises each client a fair allocation of every disk in the systewenting such attacks.

4We assume that DHT load-balancing algorithms operate on longer time sicafebursty storage overloads, so their
operation is orthogonal to the concerns we discuss here. Thus, inghimgnliscussion we assume that the key-to-node
mapping in the DHT is constant during the allocation process.
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Furthermore, the per-disk model rewards socially responsible behawithe part of
clients. Applications that are flexible in their key choice—the PAST storagesy[DRO01], for
example—can target their puts towards otherwise underutilized nodesbyhealancing the load
on the DHT while acquiring more storage for themselves. By protecting afiphsathat cannot
choose their keys while rewarding those that can, the per-disk modedgsdhe need for later load
balancing by the DHT itself.

For the above reasons, we have implemented per-disk fairness in OpeabdHwe leave
the study of global fairness to future work. Still, per-disk fairness isasatasy to implement as it
sounds. Our storage interface involves both an amount of data (thefstze ut in bytes) and a
duration (the TTL). As we show below, we can use an approach inspyréair queuing [DKS89]
to allocate storage, but the two-dimensional nature of our storage requibstantial extensions
beyond the original fair queuing model.

We now turn to describing the algorithmic components of FST. First we deskaty to
achieve high utilization for storage requests of varied sizes and TTLs wtaleenting starvation.
Next, we introduce the mechanism by which we fairly divide storage betwigamts. Finally, we
present an evaluation of the FST algorithm in simulation.

5.3.1 Preventing Starvation

An OpenDHT node prevents starvation by ensuring a minimal rate at whishcpa be
accepted at all times. Without such a requirement, OpenDHT could allocat® stthrage (fairly)
for an arbitrarily large TTL, and then reject all storage requests fodthration of that TTL. To
avoid such situations, we first limit all TTLs to be less thaseconds and all puts to be no larger
thanB bytes. We then require that each OpenDHT node be able to accept atehgit=C/T,
whereC is the capacity of the disk. We could choose a less aggressive starvatésion, one with
a smallemnin, but we are presenting the most challenging case here. (It is also lpdssiimagine
a reserved rate for future puts that is not constant over time—e.g., iégtreserve a higher rate for
the near future to accommodate bursts in usage—but as this change woifidaigly complicate
our implementation, we leave it for future work.)

When considering a new put, FST must determine if accepting it will interfere tivith
node’s ability to accept sufficiently many later puts. We illustrate this point withetzanple in
Figure 5.3, which plots committed disk space versus time. The kateeserved for future puts is
represented by the dashed line (which has stgpg. Consider two submitted puts, a large one (in
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Figure 5.3:Preventing starvation.

terms of the number of bytes) with a short TTL in Figure 5.3(a) and a smaluithea long TTL

in Figure 5.3(b). The requirement that these puts not endanger theaésainimum rate rin)

for future puts is graphically equivalent to checking whether the sumeofitle y = rpinx and the
top edge of the puts does not exceed the storage cagaaitany future time. We can see that the
large-but-short proposed put violates the condition, whereas the sutddifig proposed put does
not.

Given this graphical intuition, we derive a formal admission control testdio allocation
scheme. LeB(t) be the number of bytes stored in the system at timend letD(ty,t2) be the
number of bytes that free up in the interyalt;) due to expiring TTLs. For any point in time,
call it thow, We can compute as follows the total number of byfés), stored in the system at time

thow+ T @ssuming that new puts continue to be stored at a minimunmfgte
f(T) = B(tnow) — D(tnow7 thow+ T) +Imin X T

The first two terms represent the currently committed storage that will still biis@rat timetpow+T.
The third term is the minimal amount of storage that we want to ensure carcbpted between
thow andtpow+ T.

Consider a new put with sizeand TTL/ that arrives at tim#,on. The put can be accepted
if and only if the following condition holds for all & t < ¢:

f(t)+x<C. (5.1)



92

If the put is accepted, the functidi{t) is updated. As we show in Appendix A, this update can be
done in time logarithmic in the number of puts accepted by tracking the inflectiotspafir (T)

using a balanced tree.

5.3.2 Fair Allocation

The admission control test only prevents starvation. We now addressablem of fair
allocation of storage among competing clients. There are two questions weansger in this
regard: how do we measure the resources consumed by a client, ahdswima fair allocation
granularity?

To answer the first question, we note that a put in OpenDHT has both argize TTL;
i.e., it consumes not just storage itself, but storage over a given time p&tiedesource consumed
by a put is then naturally measured by the product of its size (in bytes) afdlitdn other words,
for the purposes of fairness in OpenDHT, a put of 1 byte with a TTL & 4€conds is equivalent
to a put of 100 bytes with a TTL of 1 second. We call the product of thesmite and its TTL its
commitment

A straightforward strawman algorithm to achieve fairness would be to tradiotal com-
mitments made to each client so far, and accept puts from clients with the smab¢stotomit-
ments. Unfortunately, this policy can lead to per-client starvation. To illustiédepoint, assume
that clientA fills the disk in an otherwise quiescent system. Once the disk is full, didregins
putting its own dataB will not starve, as the admission control test guarantees that the nod#lcan
accept data at a rate of at leagf,, but A will starve because this strawman algorithm favors client
B until it reaches the same level of total commitments granted to éiemhis period of starvation
could be as long as the maximum TTL,

To prevent such per-client starvation, we aim to equalizeatesof commitments (instead
of the total commitments) of clients that contend for storage. Thus, the séneica client receives
depends only on the competing clients at that instant of time, and not on hoyvaoamitments it
was granted in the past. This strategy emulates the well kfiaivgqueuingalgorithm that aims to
provide instantaneous fairness, i.e., allocate a link capacity equally amorgetiag flows at every
instant of time.

In fact, our FST algorithm borrows substantially from the start-time fair quge(SFQ)
algorithm [GVC96]. FST maintains a system virtual timg) that roughly represents the total
commitments that a continuously active client would receive by timBy “continuously active
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client” we mean a client that contends for storage at every point in timepLé¢note the-th put
of clientc. Then, like SFQ, FST associates with each pua start timeS(p},) and a finish time
F(p.). The start time of, is

S(p;) = max(v(A(py)) -, F (pg ), 0). (5.2)

A(pl,) is the arrival time ofpl, anda is a non-negative constant described below. The finish time of
pL is
F(PL) = S(pe) + size(p;) x ttl(pL).

As with the design of any fair queuing algorithm, the key decision in FST is how to
compute the system virtual timet). With SFQ the system virtual time is computed as the start time
of the packet currently being transmitted (served). Unfortunately, indbe of FST the equivalent
concept ofthe put currently being served is not well-defined since there are typically mats
stored in the system at any tirheTo avoid this problem, FST computes the system virtual tithe
as the maximum start time of all puts accepted before time

We now briefly describe how the fairness algorithm works in conjunction wighaith
mission control test. Each node maintains a bounded-size queue forliesttwith puts currently
pending. When a new put arrives, if the client’s queue is full, the putjested. Otherwise, the
node computes its start time and enqueues it. Then the node selects the puktudthekt start
time, breaking ties arbitrarily. Using the admission control test (Eqn. 5.1)dde ohecks whether
it can accept this put right away. If so, the node accepts it and thegsads repeated for the put
with the next-lowest start time. Otherwise, the node sleeps until it can atwepénding put.

If another put arrives, the node awakes and repeats this computédtibe. Hew put has
the smallest start time of all queued puts it will preempt puts that arriveddfar his preemption
is particularly important for clients that only put rarely—well below their fate. In such cases,
the max function in Equation 5.2 is dominated by the first argument, ardtiren allows the client
to preempt puts from clients that are at or above their fair rate. This tashisgcommonly used in
fair queuing to provide low latency to low-bandwidth flows [DKS89].

FST can suffer from occasional loss of utilization because of hedid@blocking in the
put queue. However, this blocking can only be of duratignyn, wherex is the maximal put size,
so the loss of utilization is quite small. In particular, in all of our simulations FSTeaed full

utilization of the disk.
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Figure 5.4:Non-starvationln this experiment, all clients put above their fair rates, but begin putting
at different times.

5.3.3 Evaluation

We evaluate FST according to four metrics: (ibn-starvation (2) fairness (3) utiliza-
tion, and (4)queuing latency We use different maximum TTL valuék in our tests, butm, is
always 1,000 bytes per second. The maximum putBizel kB. The maximum queue size aad
are both set t&8T.

For ease of evaluation and to avoid needlessly stressing PlanetLab, watsiowr algo-
rithm using an event-driven simulator run on a local machine. This simulatdstralevant features
of an OpenDHT node’s storage layer, but does not model any netatakcy or bandwidth. The
interval between two puts for each client follows a Gaussian distribution wsthradard deviation
of 0.1 times the mean. Clients do not retry rejected puts.

Our first experiment shows that FST prevents starvation when clientpatting at dif-
ferent times. In this experiment, the maximum TTL is three hours, giving a diska$ 103 MB
(3x 3,600x 1,000 bytes). Each client submits 1,000-byte, maximum-TTL puts at a ratg;pf
The first client starts putting at time zero, and the subsequent clients sténgpwo hours apart
each. The results of the experiment are shown in Figure 5.4. The ledtdraph shows the cumu-
lative commitments granted to each client, and the right-hand graph shows rdgesadiocated to
each client over time.

Early in the experiment, Client 1 is the only active client, and it quickly acquiezg
storage. When Client 2 joins two hours later, the two share the availablatputAfter three hours,
Client 1 continues to have puts accepted (&t,Qn), but its existing puts begin to expire, and its on-
disk storage decreases. The important point to note here is that Clienvtldemalized for its past
commitments; its puts are still accepted at the same rate as the puts of the Cliente2Cli¢it 1
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Test1 Test 2 Test 3
Client | Size TTL | Bid 50th 90th Avg| Bid 50th 90th  Avg| Bid 50th 90th  Avg
1| 1000 60| 1.0 0 974 176/ 2.0 5222 10851 5126 3.0 6605 12949 6482
2 | 1000 30| 1.0 0 0 9| 2.0 7248 11554 6467 3.0 7840 13561 7364
3| 1000 12| 1.0 0 0 9| 2.0 8404 12061 7363 3.0 8612 14173 8070
4| 500 60| 1.0 0 409 56/ 2.0 7267 11551 6490 3.0 7750 13413 7368
5| 200 60| 1.0 0 0 13| 2.0 8371 12081 7349 3.0 8566 14125 8035
6 | 1000 60| 1.0 0 861 163 1.0 396 1494 628 1.0 446 2088 933
7 | 1000 30| 1.0 0 0 12| 1.0 237 1097 561 1.0 281 1641 872
8 | 1000 12| 1.0 0 0 9| 1.0 221 1259 604 1.0 249 1557 940
9| 500 60| 1.0 0 409 63 1.0 123 926 467 1.0 187 1162 77(Q
10| 200 60| 1.0 0 0 14| 1.0 0 828 394 1.0 6 1822 804
11| 1000 60| 0.5 0 768 160 0.5 398 1182 475 0.5 444 1285 531
12 | 1000 30| 0.5 0 0 6| 0.5 234 931 320 05 261 899 328
13 | 1000 12| 0.5 0 0 5/ 0.5 214 938 306 0.5 235 891 311
14| 500 60| 0.5 0 288 37 05 137 771 226 05 171 825 249
15| 200 60| 0.5 0 0 7| 0.5 0 554 103 0.5 0 715 131

Table 5.3:Queuing times in milliseconds for each of the clients in the multiple size and TTL tests
Sizes are in bytes; TTLs are in minutes. A “bid” of 1.0 indicates that a clienttisng often enough
to fill 1/15th of the disk in an otherwise idle system.

has to eventually relinquish some of its storage, the non-starvation prabeiney algorithm allows
it to intelligently choose which data to let expire and which to renew.

As new clients arrive, the put rate is further subdivided. One maximumafier clients
stop arriving, each client is allocated its fair share of the storage avadahiéesk.

Our second experiment demonstrates fairness and high utilization whets cdigme puts
with various sizes and TTLs. In addition, it also shows that clients puttinglalow their fair rate
experience only slight queuing delays. The maximum TTL in this experimemigdour, giving a
disk capacity of 1 MB (3,600x 1,000 bytes).

We consider three tests, each consisting of 15 clients divided into thrapggras shown
in Table 5.3. All the clients in a group have the same total demand, but hageediffput frequen-
cies, put sizes, and TTLs; e.g., a client submitting puts with maximum size anthéatfaximum
TTL puts twice as often as a client in the same group submitting puts with the maximerarsiz
TTL.

The clients in Groups 2 and 3 put at the same rate in each test. The clientsup Gro
3 are light users. Each of these users demands of39th of the available storage. For example,
Client 11 submits on average one 1,000-byte, maximum-TTL put every 80@dgcAs the fair share
of each client is 115th of the disk, the puts of the clients from Group 3 should be alwayptedte
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The clients in Group 2 are moderate users, putting at exactly their fair. dharexample, Client 6
submits on average one 1,000-byte, maximum-TTL put every 15 seconds.

The clients in Group 1 put at a different rate in each test. In Test 1, thiegpthe same
rate as the clients in Group 2. Since clients in Groups 1 and 2 put at theinaig while the clients
in Group 3 put below their fair share, the system is underutilized in this teStedts 2 and 3, the
clients of Group 1 put at twice and three times their fair rate, respectivalys,Tin both these tests
the system is overutilized.

Figure 5.5 and Table 5.3 summarize the results for this experiment. Figuredws Hte
storage allocated to each client versus time. As expected, in the long tery,céeat receives
its fair share of storage. Moreover, clients that submit puts with shorsTadguire storage more
quickly than other clients when the disk is not full yet. This effect is illustrétethe steep slopes
of the lines representing the allocations of some clients at the beginninglotesic This behavior
demonstrates the benefit of using the admission control test to rate-limit neequests: looking
back at Figure 5.3, one can see that many puts with short TTLs can éptaddén a mostly-empty
disk without pushing the value df(t) overC.

Table 5.3 shows the queuing delays experienced by each client. Thisisléteytime a
put waits from the moment it arrives at the node until it is accepted. Thertheee points worth
noting. First, as long as the system is underutilized every client expesiemey low queuing
delays. This point s illustrated by Test 1.

Second, even when the system is overutilized, the clients that issue p@owtdr at
their fair rate experience low queuing delays. For example, the clients mp&di.e., Clients 11-
15) that issue puts below their fair rate experience average queuing ddlat most 531 ms, while
the clients in Group 2 (i.e., Clients 6-10) that issue puts at their fair rateiexjgeraverage queuing
delays no larger than 1 second. One reason clients in Group 3 expelogrer queuing delays than
clients in Group 2 is the use of parametein the computation of the start times (Eqgn. 5.2). Since
clients in Group 3 have fewer puts stored than those in Group 2, thereraly snore cases when
the start times of puts of clients in Group 3 are computed based on the systaal tiine (i.e.,
v(-) — a) rather than on the finish times of the previous puts.

Third, clients that are above the fair rate must wait their turn more oftenthauscexperi-

ence higher, but not unreasonable, queuing delays.
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5.4 Deployment and Evaluation

In this section we evaluate both the performance and the usability of OpenDHT

OpenDHT's lookup and storage layers are just Bamboo’s lookup amdgetdayers de-
scribed in Chapters 3 and 4. As such, in evaluating OpenDHT’s perfarena Section 5.4.1, we
do not focus on the detailed behavior of the underlying DHT routing oagtalgorithms, both of
which have been evaluated over short periods elsewhere [D4,SRGRK04, Cat03]. Rather, we
focus on thdong-runningperformance of OpenDHT in terms of data durability and put/get latency.
Although DHTSs are theoretically capable of achieving high durability, weasrare of no previ-
ous long term studies of real (not simulated) deployments that have deatedstnis capability in
practice.

As discussed in Section 5.2.2, the ReDiR library presents applications withwplatler-
face. Since each ReDiR lookup is implemented using at least one get opeadtvokup in ReDIiR
can be no faster than a get in the underlying DHT. We quantify the perfarenaf ReDiR lookups
on PlanetLab in Section 5.4.2. Thissitu performance evaluation is both novel (no implementa-
tion of ReDiR was offered or evaluated in [KRRS04]) and essential, asality of our claim
that OpenDHT can efficiently support operations beyond put/get ragilyeon the performance
penalty of ReDiR versus standard lookup and routing interfaces.

Finally, OpenDHT's usability is best demonstrated by the spectrum of afiphsdt sup-

ports, and we describe our early experience with these in Section 5.4.3.

5.4.1 Long-Running Put/Get Performance

In this section we report on the latency of OpenDHT gets and the durabilitstafstored
in OpenDHT.

Measurement Setup OpenDHT has been deployed on PlanetLab since April 2004, on between
170 and 250 hosts. From August 2004 until February 2005 we contsityassessed the availability

of data in OpenDHT using a synthetic put/get workISale. this workload, a client puts one value
into the DHT each second. Value sizes are drawn randomly {82y 64, 128, 256, 512, 1,024
bytes, and TTLs are drawn randomly froft hour, 1 day, 1 week The same client randomly
retrieves these previously put data to assess their availability; eachdsécandomly selects one

value that should not yet have expired and gets it. If the value canrretii®ved within an hour, a

5During the PlanetLab Version 3 rollout a kernel bug was introduced #iated a large number of hosts to behave
erratically until it was fixed. We were unable to run OpenDHT during thigoper
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Figure 5.6:Long-running performance and availability of OpenDH3ee text for description.

failure is recorded. If the gateway to which the client is connected csagt®vitches to another,

resubmitting any operations that were in flight at the time of the crash.

Results Figure 5.6 shows measurements taken over 3.5 months of running the abdidead.
We plot the median and 95th percentile latency of get operations onakis. The black impulses
on the graph indicate failures. Overall, OpenDHT maintains very high dityadif data; over the
3.5 months shown, the put/get test performed over 9 million puts and getsaratlit, detected
only 28 lost values. Get latency is underwhelming, though we show it cagréavdramatically in
Chapter 7. Some of our high latency is due to bugs; on February 4 wedikad that was a major
source of the latency “ramps” shown in the graph. On April 22 (not st)ome fixed another and
have not seen such “ramps” since. Other high latencies are causetinet connectivity failures;
the three points where the 95th percentile latency exceeds 200 secodds &dhe gateway being
partially partitioned from the Internet. For example, on January 28, thee®laln all-pairs-pings
database [Str] shows that the number of nodes that could reach theagatespped from 316 to
147 for 20-40 minutes. The frequency of such failures indicates thatpiee a challenge DHT
designers should be working to solve; Chapter 6 describes sevdnaidaes we use to mitigate

their effects.

5.4.2 ReDIR Performance

We consider three metrics in evaluating ReDiR performance: (1) latencykas, (2)
ReDiR’s bandwidth consumption, and (3) consistency of lookups whemgstered nodes external
to OpenDHT churn. The first two quantify the overhead due to buildingiRe®er a put/get
interface, while consistency measures ReDIiR’s ability to maintain correaiespste its additional

level of indirection relative to DHTs such as Chord or Bamboo.
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Measurement Setup To evaluate ReDiR we had 4 PlanetLab nodes eacmfdrReDiR clients

for variousn, with a fifth PlanetLab node performing ReDIR lookups of random keyss#&lected

an OpenDHT gateway for each set of clients running on a particular tREmeode by picking 10
random gateways from a list of all OpenDHT gateways, pinging thoseatehconnecting to the
one with lowest average RTT. We used a branching factbr-efLO in all of our experiments, with
client registration occurring every 30 seconds, and with a TTL of 60r&#on a client’sIP, port)

entries in the tree. Each trial lasted 15 minutes.

Results Our first experiment measured performance with a stable setlignts, forn € {16,32,
64,128 256}. Figure 5.7 shows a CDF of ReDiR lookup latency, based on 5 trials fdrread/e
compare to the latency of the OpenDHT gets performed in the process aRRe@kups. The
average lookup uses 1.3 gets, indicating that our tree depth estimation heuristic is effective. We
have verified this result in a simple simulator for up to 32,768 clients, the resultkioh match
our PlanetLab results closely within their common ranga.d8andwidth use is quite low; even at
the highest churn rate we tested, the average client registration pusEss 64 bytes per second
and a single lookup uses 800 bytes.

We next measured consistency as the rate of client churn varies. \Wé28elients with
exponentially distributed lifetimes. Whenever one client died, a new clientjoM& use the same
definition of consistency used in Chapter 3; ten lookups were perforimedkaneously on the same
key, the majority result (if any) is considered consistent, and all othermaonsistent.

Figure 5.8 plots consistency as a function of median client lifetime. We show tha me
and 95% confidence intervals based on 15 trials. Despite its layer of itidireReDIR is compet-
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itive with the implementation of Chord evaluated in our earlier work [RGRKO#oagh Bamboo
performs better at high churn rates (note, however, that the experimefR&GRK04] were per-
formed on ModelNet, whereas ours were performed on PlanetLab).

In summary, these results show that lookup can be implemented using a Diideser
with a small increase in latency, with consistency comparable to other DH@syidim very low
bandwidth.

5.4.3 Applications

We cannot directly quantify the utility of OpenDHT’s interface, so in this sectie in-
stead report on our experience with building applications over Openi Tirst give an overview
of the various OpenDHT-based applications built by us and by others.th@fe describe one
application—FreeDB Over OpenDHT (FOOD)—in greater detail. FOOD is a{béked im-
plementation of FreeDB, the widely deployed public audio-CD indexing serviks FreeDB is
currently supported by a set of replicated servers, studying FOODsllswo compare the perfor-
mance of the same application built in two very different ways. We end thisewith a brief
discussion of common feature requests from application-builders; sgclests provide one way to
identify which aspects of OpenDHT matter most during development of pgdications.

Generality: Overview of Applications

OpenDHT was opened up for experimentation to “friends and family” in KM&@04,
and to the general public in December 2004. Despite its relative infan@n@PT has already

been adopted by a fair number of application developers. To gain erper@irselves, we also



Application |

Organization

Uses OpenDHT for ... | put/get or ReDiR]

Comments

ht/

Croquet Media Messenger Croquet replica location put/get http://opencroquet.org/
Delegation Oriented Arch. (DOA MIT, UCB indexing put/get http://nms.Ics.mit.edu/doa/
Host Identity Protocol (HIP) IETF WG name resolution put/get alternative to DNS-based resolutio
Instant Messaging Class Project MIT rendezvous put/get MIT 6.824, Spring 2004
Tetherless Computing Waterloo host mobility put/get http://mindstream.watsmore.net/
Photoshare Jordan Middle Schoo HTTP redirection put/get http://ezshare.org/
Place Lab 802.11 Location System IRS location-based redirection ReDiR http://placelab.org/
and range queries
QStream: Video Streaming uBC multicast tree construction ReDiR http://gstream.org/
RSSDHT: RSS Aggregation SFSU multicast tree construction ReDiR http://sourceforge.net/projects/rssd
FOOD: FreeDB Over OpenDHT OpenDHT storage put/get 78 semicolons Perl
Instant Messaging Over OpenDHT OpenDHT rendezvous put/get 123 semicolons €&+
i3 Over OpenDHT OpenDHT redirection ReDiR 201 semicolons Java glue betwee
i3 and ReDIR, passés regr. tests,
http://i3.cs.berkeley.edu/
MOOD: Multicast Over OpenDHT]| OpenDHT multicast tree construction ReDiR 474 semicolons Java

Table 5.4:Applications built or under development on OpenDHT.

c0T
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developed four different OpenDHT applications. Table 5.4 lists the kropenDHT applications.
We make a number of observations:

OpenDHT put/get usage: Table 5.4 shows that the majority of these applications use only
OpenDHT’s put/get interface. We found that many of these (e.g., DOABOnstant messag-
ing, HIP) make quite trivial use of the DHT—primarily straightforward indexiBuch applications
are a perfect example of the benefit of a shared DHT; their relativelylsingeds are trivially met

by the put/get interface, but none of the applications in themselves wanedeployment of an
independent DHT.

ReDiR usage: We have four example applications that use ReDiR—two built by us and two by
others. i3 is an indirection-based routing infrastructure built over a DHT lookuprfiate. To
validate that ReDiR can be easily used to support applications traditionallydweitta lookup
interface, we ported th& code to run over OpenDHT. Doing so was extremely easy, requiring only
a simple wrapper that emulaté@is Chord implementation and requiring change to howa itself

is engineered.

As described in Section 4, existing DHT-based multicast systems [@BK, RHKS01,
ZZJ"01] typically use a routing interface. To explore the feasibility of supposingh applications,
we implemented and evaluated Multicast Over OpenDHT (MOOD), using a REkxiRierarchy
as suggested in [KRRS04]. (The QStream project has independeatlygad another multicast
implementation based on a ReDiR-like hierarchy.) MOOD is not a simple port ekiating im-
plementation, but a wholesale redesign. We conjecture based on thigeexpahat one can often
redesign routing-based applications to be lookup-based atop a DHi€eseWe believe this is an
area ripe for further research, both in practice and theory.

Finally, the Place Lab project [CR®5] makes novel use of ReDiR. In Place Lab, a
collection of independently operated servers processes data sanipteted by a large number of
wireless client devices. Place Lab uses ReDIR to “route” an input dataesaoe unique server
responsible for processing that sample.

In summary, in the few months since being available to the public, OpenDHTireasa
been used by a healthy number of very different applications. Of eptirs true test of OpenDHT'’s
value will lie in the successful, long-term deployment of such applicatioasnerely offer our early
experience as an encouraging indication of OpenDHT’s generality t&itg u
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FOOD: FreeDB Over OpenDHT

FreeDB is a networked database of audio CD metadata used by many Gi-pfp/i-
cations. The service indexes over a million CDs, and as of September 260daning over four
million read requests per week across ten widely dispersed mirrors.

A traditional FreeDB query proceeds in two stages over HTTP. First ligwet computes
a hash value for a CD—called ithscid—and asks the server for a list of CDs with this discid. If
only one CD is returned, the client retrieves the metadata for that CD frosetlier and the query
completes. According to our measurements, this situation occurs 91% of thertithe.remaining
cases, the client retrieves the metadata for each CD in the list serially unttdstdim appropriate
match.

A single FOOD client puts each CD’s data under its discid. To query FO@®r alients
simply get all values under a discid. A proxy that translates legacy Fregi@Bes to FOOD queries
is only 78 semicolons of Perl.

Measurement Setup We stored a May 1, 2004 snapshot of the FreeDB database containiiad) a to
of 1.3 million discids in OpenDHT. To compare the availability of data and the latehqueries

in FreeDB and FOOD, we queried both systems for a random CD evergohdg Our FreeDB
measurements span October 2—-13, 2004, and our FOOD measuremar@xsgzer 5-13.

Results During the measurement interval, FOOD offered availability superior to thiateeDB.
Only one request out of 27,255 requests to FOOD failed, where eqobsewas tried exactly once,
with a one-hour timeout. This fraction represents a 99.99% successgatangared with a 99.9%
success rate for the most reliable FreeDB mirror, and 98.8% for the &didile one.

In our experiment, we measured both the total latency of FreeDB queddhamatency
of only thefirst HTTP request within each FreeDB query. We present this last measute a
response time FreeDB might achieve via a more optimized protocol. We cofRs&#DB latencies
only for the most proximal server, the USA mirror. Comparing the full legaengion of FreeDB
against FOOD, we observe that over 70% of queries complete with lowaciate FOOD than on
FreeDB, and that for the next longest 8% of queries, FOOD and Bedfer comparable response
time. For the next 20% of queries, FOOD has less than a factor of two ldaigeicy than FreeDB.
Only for the slowest 2% of queries does FOOD offer significantly grdatency than FreeDB. We
attribute this longer tail to the number of request/response pairs in a FOOga¢taom versus in
a FreeDB transaction. Even for the idealized version of FreeDB, in wighies complete in a

single HTTP GET, we observe that roughly 38% of queries complete withrllatency on FOOD
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than on the idealized FreeDB, and that the median 330 ms required for FO@Di¢ve all CDs’
data for a discid is only moderately longer than the median 248 ms required tdeteroply the
first step of a FreeDB lookup.

In summary, FOOD offers improved availability, with minimal development or deploy

ment effort, and reduced latency for the majority of queries versusydgaeDB.

Common Feature Requests

We now briefly report experience we have gleaned in interactions wite a6®penDHT.
In particular, user feature requests are one way of identifying whipkcas of the design of a
shared DHT service matter most during development of real applicati@tgid?ts from our users

included:

XML RPC We were surprised at the number of users who requested that Opeg&teways
accept requests over XML RPC (rather than our initial offering, SuG)RPhis request in a sense
relates to generality; simple client applications are often written in scripting &geguthat manip-
ulate text more conveniently than binary data structures, e.g., as is the dzee ar Python. We
have since added an XML RPC interface to OpenDHT.

Remove function After XML RPC, the ability to remove values before their TTLs expire was the
most commonly requested feature in our early deployment. It was for trésmethat we added
remove to the current OpenDHT interface.

Authentication While OpenDHT does not currently support the immutable or signed puts we
proposed in Section 5.2.1, we have had essentially no requests forighemtication from users.
However, we believe this apparent lack of concern for security is mogy likee to these applica-

tions being themselves in the relatively early stages of deployment.

Read-modify-write As discussed in Section 5.2.1, OpenDHT currently provides only eventual
consistency. While it is possible to change values in OpenDHT by removinglthealue and
putting a new one, such operations can lead to periods of inconsistencparticular, when
two clients change a value simultaneously, OpenDHT may end up storing bothabtees. Al-
though this situation can be fixed after the fact using application-specifilictoresolution as

in Bayou [PST97], an alternate approach would be to add a read-modify-write primitive to
OpenDHT. There has recently been some work in adding such primitivesifits Dsing consen-

sus algorithms [MGMO05, RL0O3, LMRO02], and we are currently investigattiger primitives for
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improving the consistency provided by OpenDHT.

Larger maximum value size Purely as a matter of convenience, several users have requested that

OpenDHT support values larger than 1 kB. OpenDHT'’s current 1 kB mitalues exists only due
to Bamboo’s use of UDP as a transport. In the near future, we plan to impiéragmentation and

reassembly of data blocks in order to raise the maximum value size substantially.

5.5 Discussion

OpenDHT is currently a single infrastructure that provides storageréer. fWhile this
is appropriate for a demonstration project, it is clearly not viable for a {acgée and long-term
service on which applications critically rely. Thus, we expect that angessctrajectory would
involve the DHT service becoming a commercial enterprise. This entails twdisagr changes.
First, storage can no longer be free. The direct compensation may mobthetary (e.g., gmail’s
business model), but the service must somehow become self-sustainirdprit/speculate about
the form this charging might take but only note that it will presumably involvthenticating the
OpenDHT user. This could be done at the OpenDHT gateways using treditechniques.

Second, a cooperating but competitive market must emerge, in which saoopeting
DHT service providers (DSPs) peer together to provide a uniform DeVice, a DHT “dialtone,”
much as IP is a universal dialtone. Applications and clients should be abtEéssatheir DSPs
(the ones to whom they've paid money or otherwise entered into a contraetationship) and
access data stored by other applications or clients who have differdtd.D8e don’t discuss this
in detail, but a technically feasible and economically plausible peering amaet is described by
Balakrishnan et al. [BSWO05]. Each DSP would have incentive to shaisegnd gets with other
DSPs, and there are a variety of ways to keep the resulting load managbPétleservice might
be bundled with traditional ISP service (like DNS), so ISPs and DSPs wmllidentical, but a
separate market could evolve.

If such a market emerges, then DHT service might become a natural fpidue ocom-
putational infrastructure on which applications could rely. This may notifsigntly change the
landscape for large-scale, high-demand applications, which coulddsily erected a DHT for
their own use, but it will foster the development of smaller-scale applicatanshich the demand
is much less certain. Our early experience suggests there are manypglicataons, but only time
will tell.
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5.6 Summary

In this chapter we have described the design and early deployment oD®ide a public
DHT service. Its put/get interface is easy for simple clients to use, and D&Ribrary expands the
functionality of this interface so that OpenDHT can support more demaragiiptications. Storage
is allocated fairly according to our per-IP-address and per-diskitlefirof fairness. The deploy-
ment experience with OpenDHT has been favorable; the system is tyisepporting a variety of
applications, and is slowly building a user community. The latency and availabifitpitdes is

adequate and will only get better as basic DHT technology improves.
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Chapter 6

Handling Non-Transitive Connectivity

The most basic functionality of a distributed hash table, or DHT, is to partitioaya k
space across the set of nodes in a distributed system such that allaggdeson the partitioning.
For example, as discussed throughout this thesis, Bamboo assignsoelech random identifier
from the key space of integers modulé®®and maps each kdyto the node whose identifier
minimizes|i — k| mod 2%%, So long as every Bamboo node knows its predecessor and sudcessor
the key space, any node can compute which keys are mapped onto it.

An implicit assumption in Bamboo and other DHT protocols is that all nodes dee ab
to communicate with each other, yet we know this assumption is unfoundeddticpraWe say
a set of three host#, B, andC exhibit non-transitivityif A can communicate witB, andB can
communicate withC, but A cannot communicate witB. As we show in Section 6.1, 2.3% of all
pairs of nodes on PlanetLab exhibit transient periods in which they t@ontmunicate with each
other, but in which they can communicate through a third node.

Such non-transitivity in the underlying network is problematic for DHTs. <ider for
example the Bamboo network illustrated in Figure 6.1. The closest nddist. If nodesB and

C are unable to communicate with each other, however, they will both believatbayjosest td,

y \" A\

Figure 6.1:Non-transitivity in BambooThe dashed lines represent leaf set neighbor links.
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and the mapping of identifiers onto nodes will not be unigue.

While this example may seem contrived, it is in fact quite common. If each pawads
with adjacent identifiers in a 300-node Bamboo network (independentyg Bal% chance of being
unable to communicate, then we expect that there is 8.9399°°° ~ 26% chance thatomepair will
be unable to communicate at any time. However, both nodes in such a paa 88§ chance of
being able to communicate with either of the nodes that most immediately precaumwarthem
both.

While DHT algorithms seem quite elegant on paper, in practice we found theded
deal of the work getting Bamboo and OpenDHT to work on PlanetLab wat slgovering and
fixing problems caused by non-transitivity. Of course, maintaining a full$itsite routing table at
each DHT node would have sufficed to solve all such problems, but vetetddequire considerably
more bandwidth than a basic DHTinstead, we discovered a set of “hacks” to cover up the false
assumption of full connectivity on which DHTs are based.

After fixing Bamboo and OpenDHT so that they handle non-transitivity, iseayered
that the authors of the Chord [SM01] implementation in3 [SAZT02] and the Kademlia [MMO02]
implementation in Coral [FFM04] had gone through a similar process.

In this chapter we report on the combined experience gleamed from thesértiplemen-
tation efforts. We categorize the ways in which Bamboo, Chord, and Kadéenelgk down under
non-transitivity, and we enumerate the ways they can be modified to cope edth shortcomings.
We also discuss application-level solutions to the problem.

While we present these techniques mainly for completeness of this thesitsoMeope
that—at least in the short term—this work will save others the effort. In thgdoterm, we believe
an interesting research problem is the design of a DHT algorithm that tackteansitivity head-
on.

The next section quantifies the prevalence of non-transitivity on thenkttend surveys
related work in this area. Section 6.2 presents a brief review of DHT terngpol8ection 6.3
discusses four problems caused by non-transitivity in DHTs and outigwduto them. Finally,
Section 6.4 concludes.

1This problem was first pointed out by Li et al. [LSN5], in the context of the Chord and Tapestry DHTSs, although
they did not present any solutions to it.

2For some applications, link-state routing may in fact be the right solutidrsumh systems are outside the scope of
this thesis.
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6.1 Prevalence of Non-Transitivity

The Internet is known to suffer from network outages (such as exlyemeavy conges-
tion or routing convergence problems) that result in the loss of conitgdiigtween some pairs
of nodes [Pax97, ABKMO1]. Furthermore, the loss of connectivity terohon-transitive; in fact,
RON [ABKMO01] and SOSR [GMG 02] take advantage of such non-transitivity—the fact that two
nodes that cannot temporarily communicate with one another often have addiedhat can com-
municate with them both—to improve resilience by routing around network csitage

Gerding and Stribling [GS03] observed a significant degree of nasitieity among
PlanetLab hosts; of all possible unordered three-tuples of n@d&sC), about 9% exhibited non-
transitivity. Furthermore, they attributed this non-transitivity to the fact thatdLab consists of
three classes of nodes: Internetl-only, Internet2-only, and multi-howaes. Although Internetl-
only and Internet2-only nodes cannot directly communicate, multi-homedsraashecommunicate
with them both. (We don’t run OpenDHT on the Internet2-only nodes, sopérticular form of
non-transitivity does not affect us.)

Extending the above study, however, we have foundithasientrouting problems within
the Internetl-only and multihomed nodes on PlanetLab are also a major sbnocetoansitivity. In
particular, we considered a three hour window on August 3, 2005therall-pairs ping dataset [Str].
The dataset consists of pings between all pairs of nodes conductgdl&wminutes, with each data
point averaged over ten ping attempts. We counted the number of undnukgre of hostgA, B)
such thatA andB cannot reach each other but another bsan reach botl andB. We found that,
of all pairs of nodes, about &% of them belonged to this category over the three hour window. Of
these pairs of nodes, about 56% of the pairs had persistent problesss;vilere probably because
of the problem described above. However, the remaining 44% of thegdiitsited problems inter-
mittently; in fact, about 25% of the pairs could not communicate with each othefyrooe of the
15-minute snapshots. This suggests that non-transitivity is not entirelgitaciof the PlanetLab
testbed, but also caused by transient routing problems.

6.2 Chord and Kademlia

Before moving on to the core of this paper, we first briefly review the terlogyoused in
Chord and Kademlia, although we assume the reader has some basic familitritiyeir routing
protocols. For more information, see [SMR&1, MMO02].
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Like Bamboo, Chord and Kademlia both assign each participating node amadenti-
fier from the key space of integers moduff2 While Bamboo maps each kéyto the node with
identifieri that minimizesi — k| mod 2%, Chord maps to the node whose identifier most imme-
diately follows it, and Kademlia magsto the node whose identifieminimizesi XOR k. The root
for a key in Chord is often called i®uccessar

The equivalent of Bamboo’s leaf set and routing table in Chord arsubeessor listher
nodes that most immediately follow a node, andfthger table a set of nodes exponentially further
away from a node around the ring. Kademlia has no direct equivalenesé thiructures, although
it still has nearby and distant neighbors in the key space.

All three protocols greedily traverses the nodes of the DHT to perforrolaufm progress-
ing closer to the root of the key at each step.

6.3 Problems and Solutions

This section presents problems caused by non-transitivity in DHTs and ttiedsewve
use to mitigate them. We present these problems in increasing order of hawltiffiey are to

solve.

6.3.1 Invisible Nodes

One problem due to non-transitivity occurs when a node learns abstensyparticipants
from other nodes, yet cannot directly communicate with these newly dissbwedes. This prob-
lem arises both during neighbor maintenance and while performing lookups.

For example, assume that a nofldearns about a potential neighbBrthrough a third
nodeC, butA andB cannot directly communicate. We say that fréfa perspective is aninvisible
node In early versions of both Bamboo ai¢tChord,A would blindly addB as a neighbor. Later,
A would notice thaB was unreachable and remove it, but in the meantime it would try to route
messages through it.

A related problem occurs when nodes blindly trust failure notification®s fother nodes.
Continuing the above example, wharfails to contacB due to non-transitivity, in a naive imple-
mentationA will inform C of this fact, andC will erroneously remov® as a neighbor.

A simple fix for both of these problems is to prevent nodes from blindly trustthegr
nodes with respect to which nodes in the network are up or down. InseamdeA should only



112

Figure 6.2:Invisible nodes. $arns abouM andN from A while trying to route taR, butShas no
direct connectivity taVi. By sending lookup messagesitbandN in parallel,Savoids being stalled
while its request toM times out.

add a neighboB after successfully communicating with it, addshould only remove a neighbor
with whom it can no longer directly communicate. This technique is used by ab thifrour DHTSs.

Invisible nodes also cause performance problems during iterative routirege the node
performing a lookup must communicate with nodes that are not its immediate nesgihbihe
overlay. For example, as shown in Figure 6.2, a nSaeay learn of another nodd through its
neighborA, but be unable to directly communicate withto perform a lookup S will eventually
time out its request t¥, but such timeouts increase the latency of lookups substantially.

Three techniques can mitigate the effect of invisible nodes on lookuprpeafae in itera-
tive routing. First, a DHT can use virtual coordinates such as those dethpy Vivaldi [CDK"03b]
to chose tighter timeouts. This technique should work well in general, althoadtave found that
the Vivaldi implementations in both Bamboo and Coral are too inaccurate oetBé&nto be of
much use.

Second, a node can send several messages in parallel for eacp,labéwing requests
to continue towards the root even when some others time out. As shown irefagyE can send
lookup messages td andN in parallel. This technique was first proposed in Kademlia [MMO0?2].
(We have also found it effective at reducing latency in OpenDHT; Sep@r 7.)

Third, a node can remember other nodes that it was unable to reach irsth&pimg this
technique, which we call unreachable node cacha nodeS marksM as unreachable after a few
failed communication attempts. ThenMfis discovered again during a subsequent lookup request,
Simmediately concludes that it is unreachable without wasting bandwidth afedlingfa timeout.

OpenDHT and3 both use recursive routing, but Coral implements iterative routing using
the above approach, maintaining three parallel RPCs and a unreacbdkeleache with at most
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Loopy Lookup Path
————————— Following Predecessor Link

Figure 6.3: Routing loops.In Chord, if a lookup passes by the correct successor on accéunt o

non-transitivity, a routing loop arises. The correctness of lookup eamproved in such cases by
traversing predecessor links.

512 nodes stored for at most 30 minutes each.

6.3.2 Routing Loops

In Chord, non-transitivity causes routing loops as follows. The rooafkeyk in Chord
is the node whose identifier most immediately succéeidsthe circular key space. In Figure 6.3,
let the proper root fok be R. Also, assume th& cannot communicate witR. A lookup routed
throughP thus skips oveR to N, the next node in the key space with whielcan communicate.
N, however, knows its correct predecessor in the network, and therefiows that it is not the root
for k. It thus forwards the lookup around the ring, and a loop is formed.

Bamboo and Kademlia avoid routing loops by defining a total ordering ovésduring
routing. In these networks, a noAeonly forwards a lookup on kelyto another nod8 if |B—k| <
|A—K|, where “-" represents modular subtraction in Bamboo and XOR in Kademlia.

Introducing such a total ordering in Chord is straightforward: insteddindly forward-
ing a lookup towards the root, a node can stop any lookup that has alpeadgd its root. For
example, wheiN receives a lookup fdk from P, it knows something is amiss, sinBe< k < N, but
N is not the direct successor kf

Stopping a lookup in this way avoids loops, but it is often possible to getrdosiee root
for a key by routing along predecessor links once normal routing hppestia 3's Chord implemen-
tation backtracks in this way. For example, the dashed lines Mdmack toR in Figure 6.3 show

the path of the lookup using predecessor links. To guarantee terminat@mbelcktracking, once a
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— Standard Join/Put/Get Path

Alternate Return Path 1

---- Alternate Return Path 2
o—0

Figure 6.4:Broken return pathsAlthough Scan route a put or get requestRahrough the overlay,
there may be no direct IP route back frddo S. One alternative is to route the result back along
the path taken fronsto R; the other is to route through a random neighbor

packet begins following predecessor links it is never again routed &owgrd links. Furthermore,

a time-to-live (TTL) is used to avoid long predecessor paths.

6.3.3 Broken Return Paths

Often an application built atop a DHT routing layer wants not only to route todbe r
of a key but also to retrieve some value back. For example, it may routeraquest to the root,
in which case it expects an acknowledgment of its request in return. lskewith a get request,
it expects to receive any values stored under the given key. In agamportant case, it routes
a request to join the DHT to the root and expects to receive the root'sdeaf successor list in
return.

As shown in Figure 6.4, when a sourSeoutes a request recursively to the réytthe
most obvious and least costly way feto respond is to communicate directly wiit{i.e., over IP).
While this approach works well in the common case, it fails with non-transitithity;existence of
a route fromSto R through the overlay does not guarantee the existence of the direaitdtrack.
We know of two solutions to this problem.

The first solution is to source route the message backwards along the toatkld from
Sto Rin the first place, as shown by the dotted line in Figure 6.4. Since each twmugthe path
forwarded the message through a neighbor that had been respondmpgrubes for liveness, it is
likely that this return path is indeed routable. A downside of this solution is tleatéssage takes

several hops to return to the client, wasting the bandwidth of multiple nbdes.

3A similar approach, wher® uses the DHT's routing algorithm to route its respons&sddentifier, has a similar
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A less costly solution is to hawRsource route its response$ehrough a random member
of its leaf set or successor list, as shown by the dashed line in Figure IBe$ehodes are chosen
randomly with respect t® itself (by the random assignment of node identifiers), so most of them
are likely to be able to route t8& Moreover, we already know th&can route to them, or it would
not have them as neighbors.

A problem with both of these solutions is that they waste bandwidth in the comnsen ca
whereR can indeed send its response directhStoTo avoid this waste, we hav@acknowledge
the direct response from. If R fails to receive an acknowledgment after some timeBugource
routes the response back (either along the request path or througiiearsighbor). This timeout
can be chosen using virtual coordinates, although we have had diffiitiityivaldi on PlanetLab
as discussed earlier. Alternatively, we can simply choose a consertiatieout value: as it is used
only in the uncommon case wherecannot route directly t&, it affects the latency of only a few
requests in practice.

Bamboo/OpenDHT routes back through a random leaf-set neighbor itaeeof non-
transitivity, using a timeout of five seconds. At the time of this writiif8)s Chord implementation
does not handle broken return paths.

We note that iterative routing (as used in Coral) does not directly suffer this prob-
lem. SinceS directs the routing process itself, it will assuiRés down and look for an alternate
root, R (the node that would be the root® were actually down). Of course, depending on the
application R may not be a suitable replacementRyut that situation reduces to the inconsistent

root problem, which we discuss next.

6.3.4 Inconsistent Roots

The problems we have discussed so far are all routing problems. In titisrgewe
discuss a problem caused by non-transitivity that affects the coresctrighe partitioning of the
DHT key space.

Many DHT applications assume that there is only one root for a given kéneiDHT at
any given time. As shown in Figure 6.5, however, this assumption may be innali¢ presence
of non-transitivity. In the figure, nod€ is the proper root of ke, but sinceC andD cannot
communicateD mistakenly believes it is the root fé&r A lookup from$S; finds the correct root, but

a lookup fromS; stops aD.

cost but a lower likelihood of success in most cases, so we ignoreeit her
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— Put Path
---- Get Path
Replica Synchronizatior

Figure 6.5:Inconsistent rootsA put from S is routed to the rootC, which should replicate it on
A-D. But sinceC cannot communicate witD, it replicates it oA, B, andE instead.D will later
acquire a replica when it performs local maintenance WitB, or E.

Other work has explored the issue of multiple roots due to transient conddieased
by nodes joining and leaving the overlay, but did not explore the effdctsigsbehavior in the
underlying network [CCRO3Db]. Furthermore, given a complete partitioneohtwork, it is difficult
to solve this problem at all, and we are not aware of any existing solutionsQa ithe other hand,
if the degree of non-transitivity is limited, the problem can be eliminated by thefuseonsensus
algorithm. The use of such algorithms in DHTs is an active area of res@&iGMO05, RLO3,
LMRO2].

Nonetheless, consensus is expensive in messages and bandwidthysexisting DHTS
use a probabilistic approach to solving the problem instead. For exampéR&stry 1.4.1 maintains
full link-state routing information for each leaf set, and a node is congidelige if any other
member of its leaf set can route to it [fre05]. Once routability has beengwdyun this manner,
existing techniques (e.g., [CCRO03b]) can be used to provide consistency

We note that both OpenDHT and DHash [Cat03] solve the inconsistenprobtem at
the application layer using the storage algorithms described in Chapter 4ofs $n Figure 6.5,
OpenDHT sends a put request fr@nfor a key-value pairk,v) to the/’ closest predecessors and
successors d, each of which stores a replica (X, v). In the figure C cannot communicate with
D, and hence the wrong set of nodes store replicas.

Note that this problem will be automatically fixed by OpenDHT’s replica syoictzation
and discard algorithms. The next time that n@lsynchronizes with noda or B, it will discover
the missing value. The fate of the extra value storedElepends ort’s connectivity. IfE can
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communicate with botl® andD, it will notice that it should not be storing values under keynd
will discard the value to one &&-D. Otherwise, it will continue storing the value, aBdnay also
acquire the value frork in its next round of replica synchronization.

Of course, ifB fails to synchronize witlC—E between the put fron®; and the get from
S, it will mistakenly send an empty response for the get.

To avoid this case, for each get request on ke®penDHT queries multiple replicas for
k, although we postpone the discussion of that technique to the next chapter

6.4 Conclusion

In this chapter, we enumerated several ways in which Bamboo, ChoddKagemlia
break down under non-transitivity, and presented our experienasaiing with the problems in
Bamboo, as well as the related experiences of the other DHT's desigharently, non-transitivity
is no longer a significant problem in our OpenDHT deployment. Nonethetegsnains an inter-
esting open problem as to whether a DHT can be designed to handle neititity natively.
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Chapter 7

Handling Slow Nodes

At the time of this writing, we have run OpenDHT on PlanetLab for 16 months. As
described in earlier chapters, OpenDHT is built on Bamboo, which useslteshniques to mini-
mize latency and maximize stability. Still, our most persistent complaint from actdgbatential
OpenDHT users remains, “It’s just not fast enough!”

Specifically, while the long-term median latency of a get in OpenDHT is juseund
200 ms—matching the best performance reported for DHash {DéFon PlanetLab—the 99th
percentile is measured in seconds, and even the median can rise abavedwihd for short peri-
ods (see Figure 5.6).

Unsurprisingly, the long tail of this distribution is caused by a few, arbitratidyv nodes.
We have observed disk reads that take tens of seconds, computatibtekéhbundreds of times
longer to perform at some times than others, and internode ping times wekh @emond. We are
thus tempted to blame our performance woes on PlanetLab (a popular pastistghuitd systems
these days), but this excuse is problematic for two reasons.

First, peer-to-peer systems are supposed to capitalize on existingaesaot necessarily
dedicated to the system, and do so without extensive management by trparatbes. In contrast
to managed cluster-based services supported by extensive advedisinge, peer-to-peer systems
were supposed to bring power to the people, even those with flaky machines

Second, it is not clear that the problem of slow nodes is limited to PlanetLabex-o
ample, the best DHash performance on the RON testbed, which is smallersgniddded than
PlanetLab, still shows a 99th percentile get latency of over a second{®]S Furthermore, it is
well known that even in a managed cluster the distribution of individual mashperformance is

long-tailed. The performance of Google's MapReduce system, for deamps improved by 31%
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when it was modified to account for a few slow machines its designers caliedfjlers” [DG04].
While PlanetLab’s performance is clearly worsened by the fact that itasilyeshared, the mod-
ern trend towards utility computing indicates that such sharing may be the dhsemany service
infrastructures in the future.

It also seems unlikely that one could “cherry pick” a set of well-perfogriosts for
OpenDHT. The MapReduce designers, for example, found that a neaotird suddenly become a
straggler for a number of reasons, including cluster scheduling condliptially failed hard disk,
or a botched automatic software upgrade. Also, as we show in Section & dettlof slow nodes
isn't constant on PlanetLab or RON. For example, while the 90% of the timed takder 10 ms to
read a random 1 kB disk block on PlanetLab, over a period only 50 hp8%sof 259 hosts will take
over 500 ms to do so at least once. While one can find a set of fast favdeshort experiment, it
is nearly impossible to find such a set on which to host a long-running servic

We thus adopt the position that the best solution to the problem of slow noenalify
our algorithms to account for them automatically. Using a combination of delayearouting and
a moderate amount of redundancy, our best technique reduces thetageiiry of get operations
to 51 ms and the 99th percentile to 387 ms, a tremendous improvement oveiginal@lgorithm.

In the next section we quantify the problem of slow nodes on both Planeih@iRON.
Then, in Sections 7.2 and 7.3, we describe several algorithms for mitigatingffées of slow
nodes on end-to-end get latency and show their effectiveness in emDB{T deployment of ap-
proximately 300 PlanetLab nodes. We conclude in Section 7.4.

7.1 The Problem of Slow Nodes

In this section, we illustrate the problem of slow nodes in PlanetLab and RON.

Figure 7.1 present CCDFs of the time to compute a 128-bit RSA key pair@amnsmdom
1 kB block from a 1 GB file on PlanetLab using a simple C program running imitsgice. Each
line represents a single node, and the lines have similar shapes. In partidila most nodes are
fast most of the time, virtually all nodes are slow some of the time, taking tens tiréusof times
longer in the worst case than the common one.

We ran the disk read test shown in Figure 7.1.b on 259 PlanetLab nodB&6 foours,
pausing five seconds between reads. Figure 7.2.a shows the numbdesfthat took over 100 ms,
over 500 ms, over 1 s, or over 10 s to read a block since the start of reest. In only 6 hours,
184 nodes take over 500 ms at least once; in 50 hours, 235 do so.
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Figure 7.1:Computation and disk read times on PlanetLabe left-hand graph shows the time to
compute a 128-bit RSA key pair, while the right-hand graph shows the timadoareandom 1 kB
block from a 1 GB file.
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Figure 7.2:The variation in the set of slow nodes over tirfibe left-hand graph shows the union of
all PlanetLab nodes that have taken longer than 100 ms, 500 ms, 1 s, ¢t@ i€grn a disk block
since the start of the test. The right-hand graph shows the how the set ROXN nodes with the
slowest network latencies to their peers changes over time.

Figure 7.2.b shows a similar graph produced from a trace of round-trip bietegeen 15
nodes on RON [ron]. We compute for each node the median RTT to eacé oftiér fourteen, and
rank nodes by these values. The lower lines show the values for the Eigight and second largest
values over time, and the upper line shows the size of the set of nodesitleag\er had the largest
or second largest value. In only 90 hours, 10 of 15 nodes haveibehis set. This graph shows
that while the aggregate performance of the 15 nodes is relatively stablerdéaring (in terms of
performance) among them changes greatly.

In summary, Figures 7.1 and 7.2 show that on both PlanetLab and RON, thesslo
nodes at any time are significantly slower than those in the fastest half, anthit set of slow
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nodes changes relatively quickly over time.

7.2 Algorithmic Solutions

Before presenting the techniques we have used to improve get latencenDBp, we

give a brief overview of how gets were performed before.

7.2.1 The Basic Algorithm

Recall that the key space in Bamboo is the integers mod§fb BEach node in the system
is assigned an identifier from this space uniformly at random. For faultatoderand availability,
each key-value paitk, v) is stored on the four nodes that immediately precede and fddjove call
these eight nodes threplica setfor k, denotedR(k). The node numerically closest kas called its
root.

Each node in the system knows the eight nodes that immediately precedslawdtfin
the key space. Also, for each (base 2) prefix of a node’s identifiegsitone neighbor that shares
that prefix but differs in the next bit. This latter group is chosen for nekvpooximity; of those
nodes that differ from it in the first bit, for example, a node choosesldsest from roughly half
the network.

Messages between OpenDHT nodes are sent over UDP and individaktigveledged
by their recipients. A congestion-control layer provides TCP-friendbre:nd retries dropped mes-
sages, which are detected by a failure to receive an acknowledgmeint artkxpected time. This
layer also exports to higher layers an exponentially weighted averagd-tdap time to each neigh-
bor.

To put a key-value paifk, V), a client sends a put RPC to an OpenDHT node of its choice;
we call this node thgatewayfor this request. The gateway then routes a put message greedily
through the network until it reaches the root forwhich forwards it to the rest dR(k). When
six members of this set have acknowledged it, the root sends an ackgowdatiback to the gate-
way, and the RPC completes. Waiting for only 6 of 8 acknowledgments fgseggout from being
delayed by one or two slow nodes in the replica set. These delays, elmgrimternet routing incon-
sistencies may all cause some replicas in the set to have values that othetsTwreconcile these
differences, the nodes in each replica set periodically synchronizesatth other, as described in
Chapter 4.
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k, {v},
R(k), S(k)

v

=
Client

Figure 7.3:A basic get request.

As shown in Figure 7.3, to perform a get for kkythe gatewayG routes a get request
message greedily through the key space until it reaches someRwd¥k). R replies with any
values it has with ke, the setR(k), and the set of nodeS(k) with which it has synchronized on
k recently. G pretends it has received responses fiRand the nodes i&k); if these total five or
more, it sends a response to the client. Otherwise, it sends the regeeslyda the remaining nodes
in R(k) one at a time until it has at least five responses (direct or assumed dueto@yization).
Finally, G compiles a combined response and returns it to the client.

By combining responses from at least five replicas, we ensure thatadier the failure
of two nodes, there is at least one node in common between the nodestat i put and those

whose responses are used for a get.

7.2.2 Enhancements

We have explored three techniques to improve the latency of gets: defag-aouting,

parallelization of lookups, and the use of multiple gateways for each get.

Delay-Aware Routing

In the basic algorithm, we route greedily through the key space. Becacs@ede selects
its neighbors according to their response times to application-level pings hops are to nearby,
responsive nodes. Nonetheless, a burst in load may render aaespmsive neighbor suddenly
slow. Bamboo’s neighbor maintenance algorithms are designed for stabilibe afetwork, and
so adapt to such changes gradually. The round-trip times exported bgrigestion-control layer
are updated after each message acknowledgment, however, and wsecdiem to select among
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neighbors more adaptively.

The literature contains several variations on using such delay-awatieagdo improve
get latency. Gummadi et al. demonstrated that routing along the lowest-ldtepcthat makes
progress in the key space can reduce end-to-end latency, althoiryiesdts were based on simu-
lations where the per-hop processing cost was ignored [GI3% DHash, in contrast, uses a hybrid
algorithm, choosing each hop to minimize the expected overall latency of asiyeg, the expected
latency to a neighbor and the expected number of hops remaining in thetqusegle the progress
each neighbor makes in the key space [DD§].

We have explored several variations on this theme. For each neightercomputée/,,,
the expected round-trip time to the neighbor, dpdhe progress made in the key space by hopping
to n, and we modified OpenDHT to choose the neighbavith maximumh(¢,,d,) at each hop,

whereh is as follows:

Purely greedy: h(¢n,dn) = dn
Purely delay-based: h(¢y,dn) = 1/¢;,
Linearly scaled: h(¢n,dn) = dn/ln
Nonlinearly scaled: h(¢n,dn) = dn/f(¢n)

wheref (£,) = 1+ eln—100/17232 This function makes a smooth transition fgraround 100 ms,
the approximate median round-trip time in the network. For round-trip times bé&lowns, the non-
linear mode thus routes greedily through the key space, and above ttasitvadutes to minimize
the per-hop delay.

Iterative Routing

Our basic algorithm performs get requessursively routing each request through the
network to the appropriate replica set. In contrast, gets can also bemediberatively, where the
gateway contacts each node along the route path directly, as shown ie FiguiWhile iterative re-
guests involve more one-way network messages than recursive aaegethain attractive because
they are easy to parallelize. As first proposed in Kademlia [MMO02], a gat®an maintain several
outstanding RPCs concurrently, reducing the harm done by a single skw p

To perform a get on ke iteratively, the gateway node maintains upgmutstanding
requests at any time, and all requests are timed out after five secordtsrdgaest contairksand
the Vivaldi [CDK"03b] network coordinates of the gateway. When a nodeR(k) receives a get

request, it uses Vivaldi to compufg relative to the gateway for each of its neighboyand returns
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Figure 7.4:An iterative get request.

the three with the largest valuest(fd,, /) to the gateway.

When a noden € R(K) receives a get request, it returns the same response as in recursive
gets: the set of values stored undteaind the set®(k) andS(k). Once a gateway has received a
response of this form, it proceeds as in recursive routing, collectitepat five responses before

compiling a combined result to send to the client.

Multiple Gateways

Unlike iterative gets, recursive gets are not easy to parallelize. Alsootim iterative
and recursive gets, the gateway itself is sometimes the slowest node inwolaetquest. For
these reasons we have also experimented with issuing each get requetstreously to multiple
gateways. This adds parallelism to both types of get, although the paths gétthequests may

overlap as they near the replica set, and it also hides the effects of sieways.

7.3 Experimental Results

It is well known that as a shared testbed, PlanetLab cannot be used &r gatctly
reproducible results. In fact, the performance of OpenDHT varieshmudy basis.

Despite this limitation, we were able to perform a meaningful quantitative conoparis
between our various techniques as follows. We modified OpenDHT sutledbh of the modes
can be selected on a per-get basis, and we put into OpenDHT fivet@0#lyes under each of
3,000 random keys, re-putting them periodically so they would not exjdieethen wrote a script
that picks a key at random and performs one get for each possible imadeindom order. The
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Parameters \ Latency (ms) Cost per Get
GW I/R p Mode \Avg 50th 90th 99th| Msgs Bytes
1 Orig. Alg. [ 434 186 490 8113 not measured
1 R 1 Greedy| 282 149 407 4409 55 1833
1 R 1 Prox. | 298 101 343 5192 8.7 2625
1 R 1 Linear| 201 99 275 3219 6.8 2210
1 R 1 Nonlin.| 185 104 263 1830 6.0 1987
1 I 3 Greedy| 157 116 315 788 14.6 3834
1 I 3 Prox. | 477 335 1016 2377 33.1 6971
1 I 3 Linear | 210 175 422 802 18.8 4560
1 I 3 Nonlin.| 230 175 455 1103 18.3 4458
1 R 1 Nonlin.| 185 104 263 1830 6.0 1987
2 R 1 Nonlin.| 174 99 267 1609 6.0 1987
1-2 R 1 Nonlin.| 107 71 171 609 119 3973
1 I 3 Greedy| 157 116 315 788 14.6 3834
2 I 3 Greedy| 147 110 294 731 146 3834
1-2 | 3 Greedyl 88 70 195 321 29.3 7668
1-2 | 1 Greedy| 141 96 289 638 139 4194
1-2 | 2 Greedy] 97 78 217 375 225 6181
1-3 R 1 Nonlin.| 90 57 157 440 16.8 5332
1-4 R 1 Nonlin.| 81 51 142 387, 224 7110
1-2 | 2 Greedy| 105 84 232 409 20.2 5352
1-2 | 3 Greedyl 95 76 206 358 26.5 6674
1-3 | 2 Greedy] 86 62 196 332 30.3 8028

Table 7.1: Performance on PlanetLab. GWis the gateway, 1-4 for

planetlab(1415/16/13).millennium.berkeley.edu. I/R is for iterative or recursive. The costs
of the single gateway modes are estimated as half the costs of using both.

script starts each get right after the previous one completes, or afterautiofel 20 seconds. After
trying each mode, the script picks a new key, a new random ordering ofitlies, and repeats. So
that we could also measure the cost of each technique, we further moddi€@pdnDHT code to
record the how many messages and bytes it sends on behalf of eaclfi tygie \We ran this script
from July 29, 2005 until August 3, 2005, collecting 27,046 samples perenmensure that our
results cover a significant range of conditions on PlanetLab.

Table 7.1 summarizes the results of our experiments.

The first row of the table shows that our original algorithm, which alwayged all the
way to the root, takes 186 ms on median and over 8 s at the 99th percentile.

The next block of four rows shows the performance of the basic seeualgorithm of
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Section 7.2.1, using only one gateway and each of the four routing modests in Section
7.2.2. We note that while routing with respect to delay alone improves getyedente at the lower
percentiles, the linear and nonlinear scaling modes greatly improve latetiheytdgher percentiles
as well. The message counts show that routing only by delay takes the mesahd with each hop
comes the possibility of landing on a newly slow node; the scaled modes, irashgay enough
attention to delays to avoid the slowest nodes, but still make quick progréss ey space.

We note that the median latencies achieved by all modes other than gredidyg ame
lower than the median network RTT between OpenDHT nodes, which is xdpm@mtely 137 ms.
This seemingly surprising result is actually expected; with eight replicasghee, the DHT has the
opportunity to find the closest of eight nodes on each get. Using the digtritaf RTTs between
nodes in OpenDHT, we computed that an optimal DHT that magically chose thestieplica and
retrieved it in a single RTT with no processing delay would have a mediantgeciaof 31 ms, a
90th percentile of 76 ms, and a 99th percentile of 130 ms.

The next four rows show the same four modes, but using iterative rowihga paral-
lelism factor, p, of 3. Note that the non-greedy modes are not as effective here asciarsive
routing. We believe there are two reasons for this effect. First, theqrecbst in iterative routing
is higher than in recursive, as each hop involves a full round-trip,candverage the non-greedy
modes take more hops for each get. Second, recursive routing ashsdirect measurements of
each neighbor’s latency, but the Vivaldi algorithm used in iterative rgutamnot adapt as quickly
to short bursts in latency due to load.

Despite their inability to capitalize on delay-awareness, the extra paralleligerative
gets provides enough resilience to far outperform recursive oties 89th percentile. This speedup
comes at the price of a factor of two in bandwidth used, however.

The next three rows show the benefits of using two gateways with reewsts. We note
that while both gateways are equally slow individually, waiting for only the kst of them to
return for any particular get greatly reduces latency. In fact, fordingescost in bandwidth, they far
outperform iterative gets at all percentiles.

The next three rows show that using two gateways also improves thermparfoe of
iterative gets, reducing the 99th percentile to an amazing 321 ms, but thisrparfce comes at a
cost of roughly four times that of recursive gets with a single gateway.

The next two rows show that we can reduce this cost by reducing tiadlgdsm factor,
p, while still using two gateways. Using = 1 gives longer latencies than recursive gets with the

same cost, but using = 2 provides close to the performancemf 3 at only three times the cost
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of recursive gets with a single gateway.

Since iterative gets with two gateways apd= 3 use more bandwidth than any of the
recursive modes, we ran a second experiment using up to four gateyeayget request. This
experiment involved 80,000 samples per mode collected from August 8,00 August 9, 2005.
The final five rows show the results. For the same cost, recursive rgefisster than iterative ones
at both the median and 90th percentile, but slower at the 99th.

These differences make sense as follows. As the gateways are tediosa expect the
paths of recursive gets to converge to the same replica much of the time.darttmon case, that
replica is both fast and synchronized with its peers, and recursivagefaster, as they have more
accurate information than iterative gets about which neighbor is fastestcathop. In contrast,
iterative gets withp > 1 actively explore several replicas in parallel and are thus faster when
discovered replica is slow or when the first replica is not synchronizddits peers, necessitating

that the gateway contact multiple replicas.

7.4 Conclusions

In this chapter we highlighted the problem of slow nodes in distributed systerdsye
demonstrated that their effect on overall system performance can betsitidpough a combina-
tion of delay-aware algorithms and a moderate amount of redundancy tldindelay-awareness,
we reduced the 99th percentile get latency from over 8 s to under 2 sg dsactor of four more
bandwidth, we can further reduce the 99th percentile to under 400 maiatietenedian by a factor
of three.

Looking beyond our specific results, we note that there has been adolieftive hand-
wringing recently about the value of PlanetLab as an experimental platidimload is so high, it
is said, that one can neither get high performance from an experimentalesnor learn interesting
systems lessons applicable elsewhere.

We have certainly cast some doubt on the first of these two claims. Thei&geshown
in Table 7.1 are low enough to enable many applications that were once thouggoutside the
capabilities of a “vanilla” DHT. For example, Cox et al. [CMMO02] worried tizhord could not
be used to replace DNS, and others argued that aggressive cacsnggquired for DHTs to do
so [RS04a]. In contrast, even our least expensive modes aretas fBNS, which has a median
latency of around 100 ms and a 90th percentile latency of around 500 BsIQIS.

As to the second claim, there is no doubt that PlanetLab is a trying envirommevtiich
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to test distributed systems. That said, we suspect that the MapRedigreedssnight say the same
about their managed cluster. Their work with stragglers certainly bears sesemblance to the
problems we have dealt with. While the question is by no means settled, westisid®lanetLab
may differ from their environment mainly by degree, forcing us to solvélers at a scale of 300
nodes that we would eventually have to solve at a scale of tens of thausbnddes. If this is the
case, perhaps PlanetLab’s slowness is not a bug, but a feature.
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Chapter 8

Conclusion

The unavoidable price of reliability is simplicity.
— C.A.R. Hoare

In this thesis we have presented the Bamboo DHT and the OpenDHT sefie&am-
boo lookup layer supports low-latency lookups under very high chatesr with session times as
short as six minutes, a 1,000-node Bamboo network on ModelNet is still aaletage around one
half second per lookup. The Bamboo storage layer supports reliablepkigiormance put/get and
remove operations. Running on 200-300 nodes on PlanetLab, it hadgaoery high availability
as measured over months, and it maintains very low get latencies despitedbeqgeref arbitrarily
slow nodes. Both the lookup and storage layers in Bamboo are resilienhitrargsitivity in the
underlying network, a requirement for long-term use in real deployménishermore, Bamboo is
a complete implementation; no part of the system is only run in simulation.

We have also presented OpenDHT, a public DHT service designed ttheadeployment
and maintenance of DHT-based applications. By providing an existing Déplogment with a
simple put/get interface over RPC, OpenDHT allows the construction of Opiplications in tens
of lines of code.

The current put/get interface to OpenDHT is secure against most atRwtsscannot be
removed by arbitrary clients of the system, but only by those who knowratsgwsen at the time
of the put. The particular technique used is secure against packatgaiffivell. While the current
interface is still vulnerable against drowning attacks, where malicious clmmtsan important
value in other ones, a planned interface using public-key cryptogiiaptot.

OpenDHT does not limit more sophisticated DHT applications to the put/get iogerfa
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The ReDiR library and its variants have been used to implement lookup, muldodstinge-search.
In this capacity OpenDHT serves as a common rendezvous point for neimctlapplications.

OpenDHT also guarantees a fair share of storage to each client in tteensysing its
fair space-time (FST) algorithm. While this algorithm is not yet deployed in thdymtion system,
simulations show that it can provide fair shares of storage without casgngation.

Except for the public-key interface and FST, OpenDHT is also a completeingmta-
tion. It has been running continuously on PlanetLab and available fdicpuge since April 2004.
Two ReDiR implementations are available, as are implementations of multicast ayedseerch.

In the remainder of this chapter we look back on the design decisions wethradghout

the course of this research and assess them with the benefit of hindsight.

Simplicity and Reliability

We have opened this chapter with a quote by C.A.R. Hoare, “The unaveigabe of
reliability is simplicity.” Throughout our work on Bamboo and OpenDHT, weéfound this to
be the best piece of advice one could give to a distributed systems temeahs fact, it never
ceases to amaze us that a mere 3,000 lines of code (the size of the Bamigopaa behave so

unpredictably in aggregate when run simultaneously on 1,000 nodes.

The Pastry Partitioning

The choice of the Pastry algorithm’s partitioning scheme, that eaclk keynapped to
the node whose identifierminimizes|i — k| mod 2%, was unwittingly wise. Using this metric,
a node can examine at any lookup message, and without knowing wharaatfcom or where it
has been, decide whether the local node is the root or whether it shdiadviard the lookup on.
We cannot overemphasize the degree to which this makes programmingtdra spsier. Because
of this simplicity, we were able to get a basic version of the Bamboo routerimgif under a
week, and it later continued to serve us well as we dealt, for example, wittraositivity in the

underlying network.

Epidemic Algorithms

The use of epidemic algorithms in both the routing neighbor maintenance algorithms
and the storage management algorithms has also greatly simplified the codee Yldato have

stumbled across the epidemic literature when we did; our first rewrite of thegstonaintenance
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algorithms using epidemic techniques required less bandwidth during nibdesaand joins, was
less buggy, and used less code than its predecessor. The combinatsingpé DHT to partition
the key space and epidemics to maintain consistency within a portion of tha Bpagroved a
fruitful one.

From one point of view, we think of epidemic algorithms as embodying the plplyso
that in trying to get things exactly right, one is just as likely to mess everythingngiead, one
should at each step simply try and make things a little better. For example, eachdimewe a
replica in the storage layer, we're not necessarily placing it onto all dfriplet” nodes, but we are
moving it to at least one node that should have it and does not. This poimbtie sbut keeping
this philosophical notion in mind has greatly eased the design of most of thetlage used in
Bamboo.

Link Structure

The choice of routing table neighbors in Bamboo, in retrospect, seems aaltiteary to
us now. Gummadi et al. [GG®3] have shown that it has few (if any) benefits over otBdogN)
link structures (e.g., Chord), and this observation is born out by owsreeqce. A more adaptive
structure, perhaps Accordion [LSMKO05], may be the wave of the futéiseAccordion has not yet
been fully implemented and “battle tested” on PlanetLab, however, it is phpbat early to say
for sure.

The Pastry Routing Algorithm

Like the Pastry link structure, we're not sure of the value of the Pastiyng algorithm,
either. If the utmost simplicity is the goal, simple greedy routing through the kagesis easier to
explain, and for minimal route latency, the non-linear scaling of Chapter Upsr®r. The right
interface to a DHT router would probably allow each application to choos# wauting metric it
preferred; the latest Bamboo code does just that.

Put/Get/Remove

The simplicity of put/get/remove, especially our implementations of put as appgend,
as iterate, and secure, value-specific remove seems to have been aoeitge ¢ts semantics are
easy to understand, and it is easy for clients outside the DHT to obserateomérations have been

performed and make application-level decisions if necessary. If alicappn prefers that only
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one value be stored per key, it can create a total ordering over allsvéiyencluding a sequence
number and client IP address with each value, for example) and remol@wbeordered values
when conflicts occur. But we prefer not to force such semantics opplications.

Not “Cherry-Picking” Nodes

Whenever we have had a problem with a particular PlanetLab node, wékan tempted
to simply stop running OpenDHT on it. Instead, we have tried in each casedtedime way to
have the system automatically work around it. The work in Chapter 7, fangbea grew out of
this philosophy. In the long run, this approach makes the system more amigireatly reduces
the amount of time we spend maintaining the system. As a result, as of this writingweenbt
touched the maintenance interface to the public deployment in over threslweek

Dataflow Architectures

A recent bit of research that has inspired us is the dataflow-baseldwywveork of Loo
et al. [LCH"05]. While it is still in its early stages, the dataflow approach and possibly tanen

declarative specification of overlay architectures seem promising to us.

Java

Despite the doubts raised about it by many, Java has proven to be etlyadasonable
distributed systems programming language. It is much faster to prototype in tbal€&+, and
since most of the time the Bamboo/OpenDHT code is either waiting on the disk oettiverk, its
higher-level features have little effect on performance. Garbagectiolhecan still cause annoying
pauses in execution from time to time, although these have improved with the icticdaf incre-
mental collectors, and should be further reduced in the future with the camgiclevelopment of
concurrent collectors. Moreover, as the code is already designexhtiieharbitrarily slow nodes,

garbage collection can be seen as just another source of unpredgitatmess.

The Nature of Systems Research

As a final point, we would like to comment on the nature of systems reseadcbuan
place in it. As we see it, there are three main types of systems research. firstitype, the so
called measurement study, one analyzes an existing system to discauesdead its workload that
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might be used to build a better system in the future. In the second type, &haitivzall the design
study, one takes the results of some measurement study and propogesyateen; this research is
usually continued to the point of building a prototype and demonstrating its iragnoerformance
through simulation. In the third type of systems research, one builds a cormpfgdmentation of
a system that one has already motivated, prototyped, simulated, and pdipegbers about, simply
because one believes that (1) it will be useful to others as an artifdof2arone will learn more
by actually building it. As should be clear from our tone, while we see all thypes of systems
research as valuable in their own right, it is this third type that excites us molsile Wcan be
painful at times—the Bamboo [RGRKO04] and OpenDHT [RGI5] papers, for example, were
each rejected twice from top conferences before being accepted—séivery rewarding. We

cannot overstate the simple joy of a successful demo, for example.
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Appendix A

The Storage Tree

Recall from Chapter 5 that for any timg,, we can produce a functiorf,(t), which
represents the expected number of bytes in the system at a futurgdimer, assuming that new

puts continue to be stored at a minimum natg;:
f (1) = B(tnow) — D(thow: thow+T) +min X T

The first two terms represent the currently committed storage that will still biestrat timetpow+T.
The third term is the minimal amount of storage that we want to ensure carcepted between
thow @ndtyow+ T. A new put with sizex and TTL/Z that arrives at timéy,o, can be accepted if and

only if the following condition holds forall & 1 < £:
f(t)+x<C.

If the put is accepted, the functidi{t) must be updated, otherwise, we would like to compute at
what time in the future we will be able to accept the put. In this appendix we jukgfglaim from
Chapter 5 that these computations can be performed in time logarithmic in the nuhpogs i

the system at any time.

A.1 The Storage Tree

Our technique is to build a tree whose leaves represent the inflection pbihts)oThis

data structure has three primary functions:
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e shiftTime(n, thow, Fmin: thow) takes the tree that represents (1) over the time periodtiow,
thow+ T] and returns a new tree that represehts) over the time periodt/,o., thow+ T1
whereT is the maximum TTL in the system atfg,, > thow-

e nextAcceptn, thow, 'min, C, X, £) takes the trea that represent$(t) over the time periodtnow,
thow+ T| @and returns at what time in the future we will be able to accept a put ofksarel
TTL ¢, given the maximum size of the digg,

e addPutn, thow, rmin, £, X) takes the trea that represent$(t) over the time periodtnow, thow+
T] and returns a new tree over the same time period that also encompasses sizax and
TTL ¢ accepted at timgyow.

Given these functions, the FST algorithm is as described in Chapter Sonmveute which put we
are going to accept next based on fair sharing concerns, shift time gtdrege tree to the current
time, compute at what future time we can accept the put, sleep until that timehststbrage tree’s

time once more, add the put to the tree, send an accept message to the diérapan

A.2 The Basic Data Structure

Each node in the tree has eight field$#fset value low, high, height valid, left, andright.
The meaning of a nodeis that the maximum value of the functidrit) in the ranggn.low, n.high]
is equal ton.value+ n.offsetplus the sum of the offsets ofs parents in the tree. In this way, the
sumvalue+ offsetat the root of the tree is equal to the maximum valué@f) forall0<t1<T.

The tree is implemented as follows. We usié to represent an empty tree—in other
words, a tree that represents no puts. Otherwise, every node in the &itieer a leaf or has two
children. In a leaf, it is always the case that

e left =right = nil
e low=high

e height=1

e value=0

In other words, leaves have no children, they are always at the |dewesdtof the tree, and they
represent a single point in timégw. The valid flag is used to remove nodes from the tree as
described below.
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In an interior nodeleft andright are the children, and it is always the case that

low = left.low

high = right.high

height= 1+ max(left.height right.height
e value= maxleft.valid?eft.offset+ left.value: O, right.valid?right.offset+ right.value: 0)

In other words, an interior node represents the combined time range ofliteech and its height
is one greater than the height of the highest child. Vakie of an interior node represents the
maximumvalue-+ offsetof its valid children, or zero if both children are invalid.

All procedures that operate on the storage tree are functional in patuce created, a

node in the tree can never be changed. We define the following conssructo
e makelLeafoffsett) — creates a leaf with the given offséigh= low =t, andvalid = true.

e makeParerfbffsetleft, right) — creates an interior node with the given offset and children,
which satisfies the restrictions on interior nodes specified above, and viiel = left.valid v
right.valid.

¢ incrementOffsein,i) — creates a node identical ton except that'.offset= n.offset+i.
e invalidatedn) — creates a node identical ton except thatt'.valid = false

There are no other node constructors.

A.3 The Storage Tree Functions

In order to ensure that all operations on the storage tree are efficienyaintain the
invariant that the tree is balanced. Specifically, for every interior ncalensure that

|left.height—right.height < 1.

For convenience, we define for each node a virtual fieldanced that is true if and only if the
above condition holds (and that is always true for a leaf node). To talan(sub)tree that has
become unbalanced due to an insertion, we use Algorithms 1-3. Thes@ffgrare no more than

the usual balancing functions for an AVL tree, except that they ar@égteto respect the semantics
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of the offses while rotating. In particular, as in an AVL tree, using these balancingifumedoes
not effect the logarithmic cost of an insertion into the tree.

We next introduce three auxiliary functions as Algorithms 4—6. createfPoigin,t) adds
a new leaf at time to an existing tre@. The value off represented by the tree is unchanged. We
use createPoint, for example, when we want to increment or decrdnoeet a range of times and
we want to make sure that the endpoints of this range are representedesilethe tree. Except
that it maintains the semantics offset valid, etc. in the tree, createPoint is identical to the insert
function of an AVL tree, and thus has a logarithmic running time.

Our next auxiliary function is incrementRar(@el , h,i), which increments theffses on
the minimal set of nodes that cover only the range of tifhgg. In particular, the treen must
already have leaves with timésandh for incrementRange to succeed. incrementRange follows at
most two paths down and back up the tree: one corresponding td intethe other to timh, and
thus has a logarithmic running time as well.

Our final auxiliary function is invalidateRangel,h,i), which is identical to
incrementRange except that rather than modifyingaffeetfields of nodes, it sets thewalid flags
to false

We are now ready to introduce addPut and shiftTime as Algorithms 7-8. #sided

above, addPuyn, thow, 'min, ¢, X) adds a put of siz& and TTL/ to the treen. The code for addPut
is best understood visually, as illustrated in Figure A.1. The three calls tor eithkeLeaf or
createPoint are creating the three inflection points needed to reprgaanividh sizex and TTL/.
In the case where the tree was initially empty, we just add parents over tlagss ia a balanced
way, and in the case where we have an existing tree, we just call increargggRlong the length
of the put after creating the necessary points. addPut does not lodpt simply calls several
logarithmic-time functions in sequence, so it takes logarithmic time itself.

As described above, shiftTin® tnow, 'min, thow) Shifts the time represented by tne&om
[thows thow+ T] tO [tow thow+ T]- First, it creates a point fat,,,. Then, it invalidates all nodes
beforet/,,. Finally, it decrements the value d6fby rmin(thow—thow). The reason for this latter
operation is best understood visually; looking again at Figure A.1, wmawng the liney = rminx
(which represents expected future puts) from its current intersectithntine x axis at 0 to a new
intersection aty,,,, — thow

One problem with shiftTime as specified is that it never removes any nanledfie tree.
How, then, does the tree ever get smaller? As discussed above, ciatieftle more than an AVL

tree insert operation. Since it inserts only one point, it disrupts the trakiade by at most one, and
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Algorithm 1 Rotate right.
rotateRightn)
return makeParerth.offset
incrementOffsdin.left.left, n.left.offse,
makePareri0, incrementOffsdin.left.right, n.left.offsed, n.right))

Algorithm 2 Rotate left.
rotateLeftn)
return makeParerih.offset

makeParert0, n.left,incrementOffsgn.right.left, n.right.offsel),
incrementOffsdin.right.right, n.right.offsed)

Algorithm 3 Balance the tree.
balancén)

if n=nil v n.left=nil v n.balancedthen
return n
else
if n.left.height> n.right.heightthen
if n.left.left.height> n.left.right.heightthen
return rotateRightn)
else
return rotateRightmakeParerth.offsetrotateLeftn.left), n.right))
end if
else
if n.right.right.height> n.right.left.heightthen
return rotateLeftn)
else
return rotateLeftmakeParerih.offset n.left, rotateRigh¢n.right)))
end if
end if
end if

X 3 } e inflection point

T
now I tn0w+T

Figure A.1: addPut visualized.
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Algorithm 4 Add a new inflection point to the tree.
createPoir(in, rpin, t)
if n.left = nil then
if n.low =t then
return n
else ift < n.low then
return makePareri0, makeLeafn.offset+ n.rmin(n.low—t),t),n)
else
return makePareri0, n, makeLeafn.offset+ n.rmin(t — n.low),t))
end if
else
if t < n.left.highthen
return balancémakeParertih.offset balancé¢createPoir(in.left, rmin,t)), n.right))
else
return balancémakeParerih.offset n.left, balancécreatePoir(in.right, rmin,t))))
end if
end if

Algorithm 5 Increment the offsets for a range of time.
incrementRanga, |, h, i)
if I > n.highv h < n.lowthen
return n
else ifl < n.lowA h > n.highthen
return incrementOffsen, i)
else

return makeParerh.offsetincrementRange.left, |, h,i),incrementRangea.right, |, h,i))
end if

Algorithm 6 Invalidate a range of time.
invalidateRangen, |, h)
if | > n.highv h < n.lowthen
return n
else ifl < n.lowAh > n.highthen
return invalidaten)
else

return makeParergh.offsetinvalidateRangg.left, |, h), invalidateRanggn.right, |, h))
end if
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therefore it can be rebalanced just as in an AVL tree. AVL trees alse Aaemove function that
keeps the tree balanced, but shiftTime invalidates many nodes at oncactsaere it to remove

the nodes directly, it might create a tree with an imbalance greater than 1 (i.eftthabtree of a
node might have &eighttwo greater than the right subtree). To circumvent this problem, instead
of removing nodes from the tree, we merely mark them asvalid in shiftTime. Then, whenever
the entire left subtree of the root is natlid, we remove it and promote the right subtree to the root.
To do this, we introduce the shiftTimeRoot function, shown as Algorithm 9¢hvis always used
instead of shiftTime when shifting the time covered by the root of the tree.

We are finally ready to introduce our last top-level function for the steae, nextAccept,
as Algorithm 10. As described above, nextAc¢aphow, rmin, C, X, £) returns at what time in the fu-
ture we will be able to accept a put of sizand TTLZ. nextAccept is implemented as binary search
of the times betweenandt + X/rmin. (We know we can accept the put at titne X/rmin.)

Since nextAccept calls addPut and shiftTimeRO¢ibgm) times, wherem is the maxi-
mum value ofx/rmin, the running time of nextAccept ©(logmlogp), wherep is the number of
puts stored in the system. However, simsés also the maximum time the put at the head of the
gueue will wait before being accepted, there is a desire to kesmpall. In OpenDHT, we do this by
bounding the maximum put size. If we also bound the minimummate thenm is also bounded,

and hence the running time of nextAccept is merely logarithmic in the numbet®apoepted.

A.4 Status

The storage tree is implemented as described in this chapter and was utiesl FGT

simulations in Chapter 5. It is not yet deployed on PlanetLab, however.
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Algorithm 7 Add a put to the tree.
addPutn, thow, 'min, £, X)
if n=nil then
a — makeLeafXx, thow)
b «— makeLeafx+ rmin(¢ — 1), thow+ ¢ — 1)
c — makePareri0, a, b)
d — makeLeafrmin/, thow+ ¢)
return makePareri0,c,d)
else
a « createPoir(n, min, thow)
b — createPoir(@, I min, thow+ £ — 1)
c « createPoir(, r min, thow+ £)
return incrementRang@, thow, thow+ ¢ — 1, X)
end if

Algorithm 8 Shift the tree to represent only nodes frifjg, onwards.
shiftTime(n, thow, Fmin, thow)
if n=nil then
return n
else
a < createPoir(n, r min, tow)
b — invalidateRang@, thow, thow— 1)
¢ — incrementRang®, t/,, 2, —min(tow— thow))
if n.left = nil An.value=0A n.offset=0then
return nil
else
return n
end if
end if

Algorithm 9 Shift the tree to represent only nodes frijj, onwards; for use on the tree root only.
shiftTimeRootn, thow, M'min; thow)
n' — shiftTime(n, thow, F min, thow)
if n=nil v n.left.valid then
return n
else

return incrementOffsdn.right, n.offse}
end if
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Algorithm 10 Returns at what time in the future we will be able to accept a put ofxsizrel TTL/.
nextAcceptn, thow, rmin, C, X, £)
n — addPutn, thow, ' min, £, X)
if n.offsetd- n.value< C then
return thow

else
h— thow+ (X—1)/min+1
| thow
while h—1 > 1do
teI+(h=1)/2

n «— addPutshiftTimeRootn, thow, F'min, t), t, F'min, £, X)
if n.offset+ n.value< C then
h«—t
else
| —1t
end if
end while
return h
end if




143

Bibliography

[ABKMO1] David Andersen, Hari Balakrishnan, M. Frans Kaashaatd Robert Morris. Resilient

[B+04]

[bit]

[BMPO3]

[BN84]

[BRO3]

[BSS91]

[BSVO3]

overlay networks. IfProceedings of the ACM Symposium on Operating Systems Prin-
ciples (SOSR)2001.

A. Bavier et al. Operating system support for planetary-scalegr&tservices. IiPro-
ceedings of the USENIX Symposium on Design and Implementation (NEboh
2004.

Bittorrent goes trackerless: Publishing with bittorrent gets easidit p: / / wwv.
bittorrent.com trackerless.htm .

Micah Beck, Terry Moore, and James S. Plank. An end-tbapproach to globally
scalable programmable networking. RDNA, 2003.

Andrew D. Birrell and Bruce Jay Nelson. Implementing remote edoce callsACM
Transactions on Computer Systems (TQQ8)):39-59, 1984.

Charles Blake and Rodrigo Rodrigues. High availability, scalatoleage, dynamic
peer networks: Pick two. IRroceedings of the USENIX Workshop on Hot Topics in
Operating Systems (HOTQ2)003.

K. Birman, A. Schiper, and P. Stephenson. Lightweight daarsé atomic group
multicast. ACM Transactions on Computer Syste®(8):272—-314, August 1991.

Ranjita Bhagwan, Stefan Savage, and Geoffrey Voelkedethstanding availability. In
Proceedings of the International Workshop on Peer-to-Peer Syti®mBS) Febru-
ary 2003.



144

[BSWO05] Hari Balakrishnan, Scott Shenker, and Michael Walfish. eriRg peer-to-peer
providers. InProceedings of the International Workshop on Peer-to-Peer Systems
(IPTPS) February 2005.

[BTCT04] Ranjita Bhagwan, Kiran Tati, Yu-Chung Cheng, Stefan SavageGaoff M. Voelker.
Total Recall: System support for automated availability managemeolteedings
of the USENIX Symposium on Design and Implementation (N300¥%.

[Cat03] Josh Cates. Robust and efficient data management for a dixtrivash table. Mas-
ter’s thesis, Massachusetts Institute of Technology, May 2003.

[CCR0O3a] M. Castro, M. Costa, and A. Rowstron. Performance apdraiability of structured
peer-to-peer overlays. Technical Report MSR-TR-2003-94, ddift, 2003.

[CCRO3b] Miguel Castro, Manuel Costa, and Antony Rowstron. Perdmce and dependability
of structured peer-to-peer overlays. Technical Report MSR-0883204, December
2003.

[CDK*03a] M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Rowstiamd A. Singh. Split-
Stream: High-bandwidth multicast in a cooperative environmentPrateedings of

the ACM Symposium on Operating Systems Principles (SQ863.

[CDK™03b] Russ Cox, Frank Dabek, Frans Kaahoek, Jinyang Li, andrRbtmeris. Practical,
distributed network coordinates. Rroceedings of the ACM Workshop on Hot Topics
in Networks (HotNetsP003.

[CDKR0O2] M. Castro, P. Druschel, A-M. Kermarrec, and A. Rowstrddne ring to rule them
all: Service discovery and binding in structured peer-to-peer overdwyarks. In
Proceedings of the ACM SIGOPS European WorksBeptember 2002.

[CIKT03] Miguel Castro, Michael B. Jones, Anne-Marie Kermarrec, AngHeawstron, Marvin
Theimer, Helen Wang, and Alec Wolman. An evaluation of scalable applicheiah-
multicast built using peer-to-peer overlays Aroceedings of the Annual Joint Confer-
ence of the IEEE Computer and Communications Societies (INFOC&) 2003.

[CLLO2] Jacky Chu, Kevin Labonte, and Brian Neil Levine. Availabilityddiocality measure-
ments of peer-to-peer file systems.Rroc. of ITCom: Scalability and Traffic Control
in IP Networks July 2002.



145

[CMMO02] Russ Cox, Athicha Muthitacharoen, and Robert Morris. BgnDNS using a peer-
to-peer lookup service. IRroceedings of the International Workshop on Peer-to-Peer
Systems (IPTPS2002.

[CRLO3] Miguel Castro, Rodrigo Rodrigues, and Barbara Liskov. SIBEA Using abstraction
to improve fault toleranceACM Transactions on Computer Systems (TQQ${3),
August 2003.

[CRRT05] Yatin Chawathe, Sriram Ramabhadran, Sylvia Ratnasamy, Anthongica\Scott
Shenker, and Joseph Hellerstein. A case study in building layered plitatpns. In
Proceedings of ACM SIGCOMMugust 2005.

[DC99] Kenneth J. Duda and David R. Cheriton. Borrowed-virtual-timgT{Bscheduling:
supporting latency-sensitive threads in a general-purpose schdduPeoceedings of
the ACM Symposium on Operating Systems Principles (SQS89.

[DGO04] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified datagsing on large
clusters. InProceedings of USENIX Symposium on Operating System Design and
Implementation (OSD]R004.

[DGH'87] A.J. Demers, D. H. Greene, C. Hauser, W. Irish, J. Larsoigsh®enker, H. Sturgis,
D. Swinehart, and D. Terry. Epidemic algorithms for replicated databasdenaince.
In Proceedings of ACM Symposium on Principles of Distributed Computin@®0©
1987.

[DKK T01] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Idaand lon Stoica. Wide-
area cooperative storage with CFS.Rroceedings of the ACM Symposium on Oper-
ating Systems Principles (SOS$SB)ctober 2001.

[DKS89] A. Demers, S. Keshav, and S. Shenker. Analysis and simulafienfair queuing
algorithm. InProceedings of ACM SIGCOMMO989.

[DLS*04] Frank Dabek, Jinyang Li, Emil Sit, James Robertson, M. Frans Ke&skand Robert
Morris. Designing a DHT for low latency and high throughput Piroceedings of the
USENIX Symposium on Design and Implementation (NSDD4.

[Dou02] John Douceur. The Sybil attack. Rroceedings of the International Workshop on
Peer-to-Peer Systems (IPTR3D02.



[DRO1]

[DS]

[DZD*03]

[edo]

[FFMO04]

[fre]

[fre05]

[GBL*03]

[GDS'03]

[GGG03]

[GLRO4]

146

P. Druschel and A. Rowstron. Storage management and cachPgST, a large-
scale, persistent peer-to-peer storage utilityPtaceedings of the ACM Symposium
on Operating Systems Principles (SOSR)01.

Frank Dabek and Emil Sit. Personal communication.

Frank Dabek, Ben Zhao, Peter Druschel, John Kubiatowicz, @am&toica. Towards
a common API for structured P2P overlays Pioceedings of the International Work-
shop on Peer-to-Peer Systems (IPT2903.

eDonkey2000 — Overnett t p: / / www. edonkey2000. cont .

Michael J. Freedman, Eric Freudenthal, and David B&d. Democratizing content
publication with Coral. InProceedings of the USENIX Symposium on Design and
Implementation (NSDJMarch 2004.

Freepastryhttp://freepastry.rice.edu/.

Freepastry release notést p: //freepastry.rice. edu/ FreePast ry/ READVE- 1.
4.1.htnl , May 2005.

Indranil Gupta, Kenneth Birman, Prakash Linga, Al Demers, anbbRBid Van Re-
nesse. Kelips: building an efficient and stable P2P DHT through inateasenory
and background overhead. Rioceedings of the International Workshop on Peer-to-
Peer Systems (IPTP3jebruary 2003.

Krishna P. Gummadi, Richard J. Dunn, Stefan Saroiu, Steven D. |&ridlenry M.
Levy, and John Zahorjan. Measurement, modeling, and analysis ofragpeer
file-sharing workload. IfProceedings of the ACM Symposium on Operating Systems
Principles (SOSR)October 2003.

K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, ataidaSThe
impact of DHT routing geometry on resilience and proximityPioceedings of ACM
SIGCOMM August 2003.

A. Gupta, B. Liskov, and R. Rodrigues. Efficient routing paer-to-peer overlays. In
Proceedings of the USENIX Symposium on Design and Implementatibr)(I2804.



[GLS*04]

[GMG*02]

[gnu]

[GS03]

[GVC96]

[HHL 03]

[HKRZ02]

[ine]

[JKS8]

[JSBMO1]

[JT75]

147

Brighten Godfrey, Karthik Lakshminarayanan, Sonesh SuraicaaRl M. Karp, and
lon Stoica. Load balancing in dynamic structured P2P system$rdeceedings of
the Annual Joint Conference of the IEEE Computer and Communicatiocisties
(INFOCOM), 2004.

Krishna P. Gummadi, Harsha V. Madhyastha, Steven D. Gribble,yHdnr_evy,
and David Wetherall. Improving the reliability of Internet paths with one-hmree
routing. InProc. OSD] 2002.

Gnutella.ht t p: / / ww. gnut el | a. cont .

Steven Gerding and Jeremy Stribling. Examining the tradeoffsiaftated overlays
in a dynamic non-transitive network, 2003. Class projéct:p: // pdos.lcs.mit.
edu/ ~stri b/ doc/ net wor ki ngf al | 2003. pdf.

P. Goyal, H.M. Vin, and H. Cheng. Start-time fair queuing: A sttiimmg algorithm for
integrated services packet switching networks.Pinceedings of ACM SIGCOMM
August 1996.

Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Boon Thay %oatt Shenker,
and lon Stoica. Querying the Internet with PIER.Aroceedings of the International
Conference on Very Large Data Bases (VLP&E)03.

Kirsten Hildrum, John D. Kubiatowicz, Satish Rao, and Ben Y. @Zh®istributed
object location in a dynamic network. Rroceedings of ACM Symposium on Parallel
Algorithms and Architectures (SPA/002.

Inet topology generator.

http://topol ogy. eecs. uni ch. edu/inet/.

Van Jacobson and Michael J. Karels. Congestion avoidarnteantrol. InProceed-
ings of ACM SIGCOMM1988.

Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and RobertrisloDNS performance
and the effectiveness of caching. Rroceedings of the ACM SIGCOMM Internet
Measurement Workshpp001.

Paul R. Johnson and Robert H. Thomas. The maintenance bfatapdatabases.
Arpanet RFC 677, January 1975.



[KBC*00]

[KHFPO3]

[KKO3]

[KKDO1]

[KRO4]

[KRRS04]

[LCH*05]

[LHSHO4]

[LMRO2]

148

John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Ralf&ton, Dennis
Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westhagr\\We
Chris Wells, and Ben Zhao. Oceanstore: An architecture for glob#-peasistent
storage. InProceedings of the ACM Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLZDBY.

Eddie Kohler, Mark Handley, Sally Floyd, and Jitendra Padhy Data-
gram congestion control protocol (DCCPhttp://ww. i cir.org/ kohl er/dcp/
draft-ietf-dccp-spec-04.txt, June 2003.

Frans Kaashoek and David R. Karger. Koorde: A simple degngtimal hash table.
In Proceedings of the International Workshop on Peer-to-Peer SygtBmBS) 2003.

David Kempe, Jon Kleinberg, and Alan Demers. Spatial gossiprasource location
protocols. InProceedings of the ACM Symposium on Theory of Computing (STOC)
July 2001.

David R. Karger and Matthias Ruhl. Diminished Chord: A protocolfeterogeneous
subgroup formation in peer-to-peer networks. Aroceedings of the International
Workshop on Peer-to-Peer Systems (IPTRSD4.

Brad Karp, Sylvia Ratnasamy, Sean Rhea, and Scott SheBgarring adoption of
DHTs with OpenHash, a public DHT service. Rroceedings of the International
Workshop on Peer-to-Peer Systems (IPTR8D4.

Boon Thau Loo, Tyson Condie, Joseph Hellerstein, Petros Maniatisthy Roscoe,
and lon Stoica. Implementing declarative overlaysPtoceedings of the ACM Sym-

posium on Operating Systems Principles (SQ2B)5.

Boon Thau Loo, Ryan Huebsch, lon Stoica, and Joseph idtdla. The case for a
hybrid P2P search infrastructure. Broceedings of the International Workshop on
Peer-to-Peer Systems (IPTR3D04.

Nancy Lynch, Dahlia Malkhi, and David Ratajczak. Atomic dataesscin content
addressable networks. Rroceedings of the International Workshop on Peer-to-Peer
Systems (IPTPS2002.



[LNBKO2]

[LSG+04]

[LSM*05]

[LSMKO5]

[M+03]

[MCMO1]

[MCRO3]

[MD88]

[Mer88]

149

D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysitthe evolution of peer-
to-peer systems. IRroceedings of ACM Symposium on Principles of Distributed
Computing (PODGC)July 2002.

Jinyang Li, Jeremy Stribling, Thomer M. Gil, Robert Morris, and FrEasshoek.
Comparing the performance of distributed hash tables under chuRroteedings of
the International Workshop on Peer-to-Peer Systems (IP,TRB}.

Jinyang Li, Jeremy Stribling, Robert Morris, M. Frans Kaashoeki @homer M.

Gil. A performance vs. cost framework for evaluating DHT design tréfdamder
churn. InProceedings of the Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCONDOS5.

Jinyang Li, Jeremy Stribling, Robert Morris, and M. Fransakhoek. Bandwidth-
efficient management of DHT routing tables. Rrmoceedings of the USENIX Sympo-
sium on Design and Implementation (NS2005.

Alan Mislove et al. POST: a secure, resilient, cooperative messagstgm. In
Proceedings of the USENIX Workshop on Hot Topics in Operating Sy$HOTOS)
2003.

A. Muthitacharoen, B. Chen, and D. M&zes. A low-bandwidth network file sys-
tem. InProceedings of the ACM Symposium on Operating Systems PrinciplesSOSP
2001.

Ratul Mahajan, Miguel Castro, and Antony Rowstron. Contrgllihe cost of re-
liability in peer-to-peer overlays. IRroceedings of the International Workshop on
Peer-to-Peer Systems (IPTRSgbruary 2003.

Paul V. Mockapetris and Kevin J. Dunlap. Development of the domame system.
In Proceedings of ACM SIGCOMM988.

R. Merkle. A digital signature based on a conventional ert@gfunction. In Carl
Pomerance, editoRroceedings of the Annual International Cryptology Conference
(CRYPTO)pages 369-378. Springer-Verlag, 1988.



150

[MGMO05] Athicha Muthitacharoen, Seth Gilbert, and Robert Morris. Ethéault-tolerant algo-
rithm for atomic mutable DHT data. Technical Report MIT-LCS-TR-993TMLCS,
June 2005.

[mit] Chord. http: //ww. pdos. | cs. mt.edu/ chord/.

[MMO02] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-igermation sys-
tem based on the XOR metric. Rroceedings of the International Workshop on Peer-
to-Peer Systems (IPTR2002.

[MMGCO02] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy: Aadywrite peer-to-peer
file system. InProceedings of USENIX Symposium on Operating System Design and
Implementation (OSD]R002.

[MNJHO4] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderstwost identity protocol (work
in progress). IETF Internet Draft, 2004.

[NL97] Jason Nieh and Monica S. Lam. The design, implementation and ¢waluaf
SMART: A scheduler for multimedia applications. Broceedings of the ACM Sym-
posium on Operating Systems Principles (SQ%B97.

[Pax97] Vern PaxsonMeasurements and Analysis of End-to-End Internet DynamiRisD
thesis, University of California, Berkeley, 1997.

[Pit87] Boris Pittel. On spreading a rum@IAM J. Applied Math47, 1987.

[PRR97] C. Plaxton, R. Rajaraman, and A. Richa. Accessing neaifigsof replicated ob-
jects in a distributed environment. FProceedings of ACM Symposium on Parallel
Algorithms and Architectures (SPAAune 1997.

[PSTT97] Karin Petersen, Mike Spreitzer, Douglas Terry, Marvin Theimed, Alan Demers.
Flexible update propagation for weakly consistent replicationProteedings of the
ACM Symposium on Operating Systems Principles (SQASRY.

[Rab81] M. O. Rabin. Fingerprinting by random polynomials. Technicgbdtt TR-15-81,
Center for Research in Computing Technology, Harvard Universi§1.19

[RDO1] A. Rowstron and P. Druschel. Pastry: Scalable, distributedblgjeation and routing
for large scale peer-to-peer systemslIRHP/ACM Middleware November 2001.



[REG+03]

[RFH*01]

[RGK*05]

[RGRKO3]

[RGRKO4]

[RHO3]

[Rhe034a]

[Rhe03b]

[RHKSO01]

[RKO4]

151

Sean Rhea, Patrick Eaton, Dennis Geels, Hakim WeatherspoorzBen and John
Kubiatowicz. Pond: the OceanStore prototype Phoceedings of the USENIX Con-
ference on File and Storage Technologies (FA®3rch 2003.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp Saodt Shenker. A
scalable content-addressable network.Pmceedings of ACM SIGCOMMugust
2001.

Sean Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz,i&Ratnasamy, Scott
Shenker, lon Stoica, and Harlan Yu. OpenDHT: A public DHT serviat itsuses.
In Proceedings of ACM SIGCOMMwugust 2005.

Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kul@atottandling churn
in a DHT. Technical Report UCB//CSD-03-1299, University of CalifarrBerkeley,
December 2003.

Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kulmatottandling churn
in a DHT. InProceedings of the USENIX Annual Technical Conferedicee 2004.

Timothy Roscoe and Steven Hand. Palimpsest: Soft-capacity stéwaglanetary-
scale services. IRroceedings of the USENIX Workshop on Hot Topics in Operating
Systems (HOTOSMay 2003.

Sean Rhea. Epidemic algorithms at work.  OceanStore Dexeldpail-
ing List, April 2003. https://oceanstore.cs. berkel ey. edu/ mail ar chi ve/
oceanst ore. 0304/ 0012. htni .

Sean Rhea. Re: Epidemic algorithms at work. OceanStoreldpere Mail-
ing List, April 2003. https://oceanstore. cs. berkel ey. edu/ mai |l archi ve/
oceanst ore. 0304/ 0013. htm .

Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scah&ér. Application-level
multicast using content-addressable networkecture Notes in Computer Science
2233:14-29, 2001.

Matthias Ruhl and David R. Karger. Simple efficient load balanalgprithms for
peer-to-peer systems. Rroceedings of the International Workshop on Peer-to-Peer
Systems (IPTPS2004.



152

[RKCDO01] A. Rowstron, A-M. Kermarrec, M. Castro, and P. DrudclsCRIBE: The design of a
large-scale event notification infrastructure NGC2001 2001.

[RLO3] Rodrigo Rodrigues and Barbara Liskov. Rosebud: A scaBbtantine-fault-tolerant
storage architecture. Technical Report TR/932, MIT CSAIL, Decerabe3.

[RLBO3] Sean Rhea, Kevin Liang, and Eric Brewer. Value-basedeeehing. InProceedings
of the International World Wide Web Conference (W\MV8y 2003.

[ron] Ron latency dataht t p: // nms. csai | . mit. edu/ron/ data/.

[RRHS04] Sriram Ramabhadran, Sylvia Ratnasamy, Joseph HellerstdiScatt Shenker. Brief
announcement: Prefix hash tree (extended abstracBroceedings of ACM Sympo-
sium on Principles of Distributed Computing (PODQ@PO04.

[RS044a] Venugopalan Ramasubramanian and Emin Gun Sirer. The dadign@lementation
of a next generation name service for the InterneBriosceedings of ACM SIGCOMM
August 2004.

[RS04b] Venugopalan Ramasubramanian and Emin Gn Sirer. Beehig:lddkup perfor-
mance for power-law query distributions in peer-to-peer overlayfrdceedings of
the USENIX Symposium on Design and Implementation (NSD0OJ.

[rss] RSS protocol. Wikipedieht t p: // en. wi ki pedi a. or g/ wi ki / RSS_(prot ocol ).

[SAZT02] lon Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, amé8oSurana. Inter-
net indirection infrastructure. IRroceedings of ACM SIGCOMMwugust 2002.

[SCLT05] Jeremy Stribling, Isaac G. Councill, Jinyang Li, M. Frans Kaashbakid R. Karger,
Robert Morris, and Scott Shenker. Overcite: A cooperative digitsaech library. In
Proceedings of the International Workshop on Peer-to-Peer SygtefBS) 2005.

[SDR0O4]  Emil Sit, Frank Dabek, and James Robertson. UsenetDHT: A \@shead Usenet
server. InProceedings of the International Workshop on Peer-to-Peer Systems
(IPTPS) 2004.

[SGGO02]  Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. Aurerasnt study
of peer-to-peer file sharing systems. Pmoceedings of Multimedia Computing and
Networking (MMCN)January 2002.



[SMK*01]

[SMPDO5]

[Str]

[STZ04]

[SWO00]

[SW02]

[VVRBO2]

[VYW +02]

[WBS04]

[ZDH*02]

153

lon Stoica, Robert Morris, David Karger, M. Frans KaashoaekK, ldari Balakrishnan.
Chord: A scalable peer-to-peer lookup service for Internet applicgtitn Proceed-
ings of ACM SIGCOMMAugust 2001.

Daniel Sandler, Alan Mislove, Ansley Post, and Peter DreiscReedTree: Sharing
web micronews with peer-to-peer event notification. Phoceedings of the Interna-

tional Workshop on Peer-to-Peer Systems (IPTF8pruary 2005.

Jeremy Stribling. Planetlab all-pairs ping.http://ww. pdos. | cs. mt. edu/
~strib/pl _app/ APP_README. t xt .

Subhash Suri, Csaba Toth, and Yunhong Zhou. Uncodetiriaad balancing and
congestion games in P2P systems.Pmceedings of the International Workshop on
Peer-to-Peer Systems (IPTR3D04.

Neil T. Spring and David Wetherall. A protocol-independentiépie for eliminating
redundant network traffic. IRroceedings of ACM SIGCOMMO000.

Subhabrata Sen and Jia Wang. Analyzing peer-to-peer taaffiss large networks.
In Proceedings of the ACM SIGCOMM Internet Measurement Works\opember
2002.

Werner Vogels, Robbert van Renesse, and Ken Birmane pdwer of epidemics:
Robust communication for large-scale distributed systemBrdoneedings of the ACM
Workshop on Hot Topics in Networks (HotNetrtober 2002.

Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan Kodéff,Chase,
and David Becker. Scalability and accuracy in a large-scale network tonulln
Proceedings of USENIX Symposium on Operating System Design aleariempation
(OSDI), December 2002.

Michael Walfish, Hari Balakrishnan, and Scott Shenker.tabgling the Web from
DNS. In Proceedings of the USENIX Symposium on Design and Implementation
(NSDI), March 2004.

Ben Y. Zhao, Yitao. Duan, Ling Huang, Anthony D. Joseph, aihJI®. Kubiatowicz.
Brocade: Landmark routing on overlay networks Pimceedings of the International
Workshop on Peer-to-Peer Systems (IPTR&rch 2002.



[ZHS*04]

[2ZJ+01]

154

Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, AnthanjoBeph, and
John D. Kubiatowicz. Tapestry: A resilient global-scale overlay foviserdeploy-
ment. |IEEE Journal on Selected Areas in Communicatjo?®(1):41-53, January
2004.

Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy Hz,Kad John Ku-
biatowicz. Bayeux: An architecture for scalable and fault-tolerant \wige data
dissemination. IiNetwork and Operating System Support for Digital Audio and Video
(NOSSDAV,)2001.



