
OpenDHT: A Public DHT Service

by

Sean Christopher Rhea

B.S. (University of Texas, Austin) 1998

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor John Kubiatowicz, Chair

Professor Scott Shenker
Professor John Chuang

Fall 2005

The dissertation of Sean Christopher Rhea is approved:

Chair Date

Date

Date

University of California, Berkeley

Fall 2005

OpenDHT: A Public DHT Service

Copyright 2005

by

Sean Christopher Rhea

1

Abstract

OpenDHT: A Public DHT Service

by

Sean Christopher Rhea

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor John Kubiatowicz, Chair

The distributed hash table, or DHT, is a distributed system that provides a traditional hash

table’s simple put/get interface using a peer-to-peer overlay network. DHTs deliver incremental

scalability in the number of nodes, high availability, and low latency.

We present the Bamboo DHT and the OpenDHT public DHT service. Bamboo supports

low-latency under very high churn rates; with session times as short as sixminutes, a 1000-node

Bamboo network on ModelNet is still able to average around one half second per get operation.

Bamboo also supports reliable, high-performance storage on a 200–300node PlanetLab deploy-

ment. It provides very high availability as measured over months, and it maintains very low get

latencies despite the presence of arbitrarily slow nodes. Furthermore, Bamboo is resilient to non-

transitivity in the underlying network, a requirement for long-term use on the Internet.

OpenDHT is a public DHT service designed to ease the deployment and maintenance of

DHT-based applications. By providing an existing deployment with a simple put/get interface over

RPC, OpenDHT allows the construction of DHT applications in tens of lines of code. OpenDHT

provides a simple, secure put/get/remove interface, and it also supports more sophisticated features

such as anycast, multicast, and range search using client-side libraries. Furthermore, OpenDHT

guarantees a fair share of storage to each client in the system, while preventing any client from going

long periods without being able to perform any puts at all. At the time of this writing, OpenDHT

has been running as a public service on PlanetLab for over 16 months.

Professor John Kubiatowicz
Dissertation Committee Chair

i

Contents

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Two Example DHT Applications . 2

1.1.1 Coral . 2
1.1.2 FeedTree . 4
1.1.3 Discussion . 5

1.2 OpenDHT: The DHT as a Service .5
1.3 Contributions . 6

1.3.1 Lookup in DHTs . 6
1.3.2 Storage in DHTs . 8
1.3.3 OpenDHT: A Public DHT Service . 8
1.3.4 DHT Practicalities . 10

1.4 Assumptions . 11
1.5 Summary . 12

2 Background 13
2.1 The Bamboo DHT . 13
2.2 Advantages of DHTs . 15
2.3 Limitations of DHTs . 16
2.4 Related work . 18

2.4.1 DHT Geometries . 18
2.4.2 Lookup Practicalities . 20
2.4.3 DHT Storage . 22
2.4.4 Sharing A DHT Between Applications . 24
2.4.5 Sharing A DHT Between Clients . 26
2.4.6 Load Balancing . 27

2.5 Summary . 28

3 Lookup 29
3.1 The Problem of Churn . 32

3.1.1 Empirical studies . 33

ii

3.1.2 Experimental Methodology . 34
3.1.3 Existing DHTs . 36

3.2 The Bamboo DHT . 38
3.3 Handling Churn . 41

3.3.1 Reactive vs. Periodic Recovery . 41
3.3.2 Timeout Calculation . 44
3.3.3 Proximity Neighbor Selection . 47

3.4 Related Work . 53
3.5 Future Work . 54
3.6 Conclusion . 55

4 Storage 57
4.1 Background . 57
4.2 Introduction to Epidemic Algorithms . 59

4.2.1 Anti-Entropy . 59
4.2.2 Rumor Mongering . 59
4.2.3 Epidemic Algorithms and System Stability 60

4.3 Epidemic Algorithms Meet DHTs . 60
4.3.1 Replica Synchronization . 60
4.3.2 Discarding Unwanted Values . 68

4.4 Handling Mutable Data . 69
4.5 Related Work . 70
4.6 Future Work . 71

4.6.1 A Better Discard Algorithm . 71
4.6.2 Accounting for Spatial Distributions . 72
4.6.3 Further Reducing the Cost of Temporary Failures 73
4.6.4 Controlled Performance Studies . 74

4.7 Summary and Discussion . 74

5 OpenDHT 76
5.1 Overview of Design . 78

5.1.1 Interface . 78
5.1.2 Storage Allocation . 80

5.2 Interface . 81
5.2.1 The put/get API . 81
5.2.2 ReDiR . 85

5.3 Storage Allocation . 88
5.3.1 Preventing Starvation . 90
5.3.2 Fair Allocation . 92
5.3.3 Evaluation . 93

5.4 Deployment and Evaluation . 97
5.4.1 Long-Running Put/Get Performance . 98
5.4.2 ReDiR Performance . 99
5.4.3 Applications . 101

5.5 Discussion . 106

iii

5.6 Summary . 106

6 Handling Non-Transitive Connectivity 108
6.1 Prevalence of Non-Transitivity .. . 110
6.2 Chord and Kademlia . 110
6.3 Problems and Solutions . 111

6.3.1 Invisible Nodes . 111
6.3.2 Routing Loops . 113
6.3.3 Broken Return Paths . 114
6.3.4 Inconsistent Roots . 115

6.4 Conclusion . 117

7 Handling Slow Nodes 118
7.1 The Problem of Slow Nodes . 119
7.2 Algorithmic Solutions . 121

7.2.1 The Basic Algorithm . 121
7.2.2 Enhancements . 122

7.3 Experimental Results . 124
7.4 Conclusions . 127

8 Conclusion 129

A The Storage Tree 134
A.1 The Storage Tree . 134
A.2 The Basic Data Structure . 135
A.3 The Storage Tree Functions .. 136
A.4 Status . 140

Bibliography 143

iv

List of Figures

1.1 A distributed hash table . 2
1.2 The Coral content distribution network .. . 3
1.3 Cooperative RSS dissemination with FeedTree 4

2.1 A Bamboo node’s neighbors .14
2.2 A lookup in Bamboo . 15
2.3 Iterative lookup . 21

3.1 Metrics of churn . 31
3.2 FreePastry under churn .. . 36
3.3 Chord under churn .37
3.4 The need for pushing and pulling leaf sets .. . 39
3.5 The Bamboo communications layer interface . 40
3.6 Reactive versus periodic recovery 43
3.7 TCP-style versus virtual coordinate-based timeouts in Bamboo 46
3.8 Sampling neighbors’ neighbors .. 49
3.9 Sampling neighbors’ inverse neighbors 50
3.10 The Tapestry nearest neighbor algorithm 51
3.11 Comparison of PNS techniques .. 52

4.1 The storage problem . 58
4.2 Replica synchronization .61
4.3 A Merkle tree . 62
4.4 Replica synchronization with Merkle trees .. 63
4.5 Picking block boundaries using Rabin functions 64
4.6 The importance of sort order .. 66
4.7 The need for the discard algorithm .. 67

5.1 OpenDHT architecture . 77
5.2 An example ReDiR tree . 87
5.3 Preventing starvation . 91
5.4 Non-starvation . 94
5.5 Fair allocation despite varying put sizes and TTLs 96
5.6 Long-running performance and availability of OpenDHT 99

v

5.7 Latency of ReDiR lookups and OpenDHT gets 100
5.8 Consistency and cost of ReDiR lookups .. . 101

6.1 Non-transitivity in Bamboo . 108
6.2 Invisible nodes . 112
6.3 Routing loops . 113
6.4 Broken return paths .114
6.5 Inconsistent roots .116

7.1 Computation and disk read times on PlanetLab 120
7.2 The variation in the set of slow nodes over time120
7.3 A basic get request .122
7.4 An iterative get request .. 124

A.1 addPut visualized. .138

vi

List of Tables

3.1 Observed session times in various peer-to-peer systems 33

4.1 The effectiveness of the discard algorithm 69

5.1 The put/get interface . 83
5.2 The lookup interface provided using ReDiR. 86
5.3 Queuing times in the multiple size and TTL tests 95
5.4 Applications built or under development on OpenDHT 102

7.1 Get latency and bandwidth on PlanetLab .. 125

vii

Acknowledgments

John Kubiatowicz, my advisor, first got me excited about peer-to-peer systems. The first

talk I saw him give was the OceanStore pitch, and I caught the fever immediately. This thesis is the

result of that six-year obsession. Kubi is also a master of pedagogy, and every paper and talk I have

written has ended up remarkably more clear as a result of his advise.

Scott Shenker convinced me that a public DHT service made sense, despitemy stubborn

refusal to see it at the time. His insistence on simplicity as a path to robustness has shaped the way

I think about systems ever since, and I am indebted to him for it.

Ion Stoica has given me excellent advice at several key points in my time at Berkeley, and

his imprint can been seen in both Bamboo and OpenDHT. His insights on the FSTalgorithm, in

particular, were vital.

Eric Brewer and Joe Hellerstein, in teaching the graduate systems course myfirst semester

at Berkeley, convinced me to change my research focus from programming languages to systems.

I’ve since worked for both of them—for Eric while at Inktomi and for Joe while at Intel—and have

benefited from their advise throughout.

John Chuang graciously agreed to be on my qualifying exam committee and to bea reader

for my thesis, despite being swamped by such requests from the CS department.

At Intel, Brad Karp, Sylvia Ratnasamy, and Timothy Roscoe have been excellent mentors

and co-authors of mine. Brad and Sylvia helped Scott turn me on to the OpenDHT idea, and I’ve

enjoyed working with them ever since. Mothy has a systems intuition shaped byexperiences from

multimedia operating systems to telephone networks, and I always appreciate his diverse perspec-

tive.

Outside of professors and mentors, I’ve been blessed with a wonderful group of additional

co-authors over the years. Dennis Geels contributed much of the work that has ended up in Chapter 3

of this thesis, writing the benchmarking scripts, helping me understand what was wrong with the

other DHT implementations, and being the sounding board against which I triedout my early ideas

for Bamboo.

The other core members of the Pond crew, Patrick Eaton and Hakim Weatherspoon, have

also been vital sounding boards for ideas, and through their early adoption of Bamboo in Pond,

helped me debug and refine my code as well.

The version of ReDiR presented in Chapter 5, a significant improvement over our earlier

work [KRRS04], is the work of Brighten Godfrey. Mike Freedman and Karthik Lakshminarayanan

viii

are responsible for the insights into Chord and Kademlia that appear in Chapter 6. Byung-Gon

Chun, my coauthor on the paper that became Chapter 7, built the testing framework used there and

contributed several important insights.

I was first motivated to apply to graduate school by three professors atthe University of

Texas—Adnan Aziz, Jeff Chase, and Vijay Garg—all three of whom laterhelped in getting me into

Berkeley by writing my letters.

Likewise, Eric Brewer, John Kubiatowicz, Scott Shenker, Ion Stoica, Remzi Arpaci-

Dusseau, and Jody Lewen all wrote much-appreciated letters of recommendation for my job search

at the end of graduate school.

Several of members of the EECS department administration—Mary Byrnes, Ruth Gjerde,

Peggy Lau, and La Shana Porlaris—have helped me navigate the university’s ample red tape.

I have been financially supported throughout this work by the National Science Founda-

tion and IBM through research grants and fellowships, and by Inktomi and Intel through summer

internships.

My brother, friends, and roommates have been wonderfully supporting throughout my

graduate career, listening to my frustrations and understanding when I had to work late rather than

socialize. Likewise, my dog has endured far to little attention at times.

Finally, I must give much credit and thanks to my parents, who kick-started this whole

process when they enrolled me in Logo programming classes at the age of eight and later bought my

brother and I an Apple II computer of our own. I wonder if they knew thenwhat they were getting

me into.

1

Chapter 1

Introduction

Large-scale distributed systems are notoriously difficult to design, implement,deploy,

and debug. Consequently, there is a long history of research that aims to ease the construction of

such systems by providing simple primitives on which more sophisticated functionality can be built.

Examples include remote procedure call (RPC) [BN84], the domain name system (DNS) [MD88];

fault-tolerant, replicated state machines [CRL03]; causal, atomic multicast [BSS91]; and epidemic

communication primitives [DGH+87].

A more recent addition to this list is the distributed hash table, or DHT [RD01,RFH+01,

SMK+01, ZHS+04]. A hash table is a data structure that provides two main functions:put takes

a key and value and stores them in the table, andget takes a key and returns the value (if any)

previously put under that key. A distributed hash table provides this same interface, but partitions

the key space across a set of cooperating peers to provide incrementalscalability, and replicates

each key-value pair for high availability.

Figure 1.1 shows an example DHT. Seven nodes participate in the system, andthe key

space is divided between them. An overlay network connects the nodes. When the node in the lower

left corner puts a key-value pair into the DHT, the put request is routed tothe node responsible for

the key in question, and that node stores the pair. When the node on the lower right later tries to get

all values with that key, the get request is routed to the same node, and it returns the value previously

put.

Without going into detail, we review the basic benefits of DHTs. First, they arescalable;

additional capacity can be added to the system by simply adding more nodes. Second, they are

fault-tolerant; although not shown in the picture, DHTs generally store each value on several nodes,

so that no value will be lost with the failure of any one node. A related point isthat DHTs are

2

key
key value

key value

stores (key,value)

get(key)

key value

key valuekey value

value

key value

put(key,value)

Figure 1.1:A distributed hash table.

completely decentralized; there is no one point of control, and hence no one node that will disable

the system by its failure. Third, DHTs can be built up entirely on existing resources; there is no

need for expensive, managed infrastructure on which to host the system.

In practice, there are a number of challenges to building such a system, butbefore we

move forward from this simple description, we first describe two DHT applications, in order to give

a concrete notion of the utility of DHTs.

1.1 Two Example DHT Applications

Two DHT applications—the Coral content distribution network [FFM04] andthe FeedTree

cooperative news service [SMPD05]—have recently gained some popularity. Although we did not

build these applications ourselves, they nicely illustrate the utility of DHTs. In thissection we

describe both applications at a high level. Our intent here is purely pedagogical; we will omit or

modify details as necessary for clarity of presentation. For a complete and accurate description of

either application, the reader is referred to the publications cited above.

1.1.1 Coral

The Coral content distribution network (CDN) allows a group of web sites toprotect

themselves against flash crowds by cooperatively serving each others’ content. Figure 1.2 illus-

trates the Coral system. When Client 1 fetches a web page from server foo.com, Coral intercepts

request, routing it through server bar.com. When foo.com responds, bar.com caches a copy of the

response. When Client 2 later fetches the same web page, Coral routes the request through bar.com,

3

Client 2

foo.com

Client 1

Coral

bar.com

Figure 1.2:The Coral content distribution network.

which returns the web page directly, without contacting foo.com a second time. In this way, Coral

shifts load for foo.com onto its peers; under light usage, this technique does not significantly help

performance, but when a single server experiences a surge in popularity, its peers help it to satisfy

the demand.

To reduce the load on a web server, Coral must ensure that subsequent requests for that

server’s web pages are routed through other sites in the system that already contain cached copies

of those pages. It achieves this feat through the partitioning performed by a DHT; for any given

resource, it uses this partitioning to select a set of servers that will act as caches for that resource.

Instead of using a DHT, however, Coral could of course use some centralized index of resources, or

even a centralized cache. We thus review why a DHT is a particularly good fit for Coral.

One major advantage of using a DHT in Coral is that the system contains no natural

point of centralization. The web sites that make up the system are each small and relatively low

bandwidth; otherwise, they could handle their own flash crowds and wouldhave little motivation to

participate. While the sites could band together to pay for high-bandwidth, centralized service from

some third party, Coral instead allows them to utilize the bandwidth they already have to accomplish

the same goal.

Another benefit of using a DHT in Coral is that because there is no one point of cen-

tralization, any site can opt out of the system at any time. While doing so reduces the effective

bandwidth in the system, it does so only in proportion to the amount of bandwidththat the depart-

ing site was providing. Likewise, when a new site joins, the net bandwidth of the system increases

by the bandwidth available from that site. For this reason, we say that the system isincrementally

scalable.

While incremental scalability is attractive in its own right, it also provides a secondary

4

foo.com

Client 4

Client 3

Client 2

Client 1

Figure 1.3:Cooperative RSS dissemination with FeedTree.

advantage to the system in that it creates a so-callednetwork effect: the more sites that join the

system, the larger a flash crowd the system as a whole can handle, and the more attractive it is for

other nodes to join.

The three advantages Coral achieves by using a DHT—decentralization,incremental scal-

ability, and the network effect—are also realized by FeedTree, as we describe next.

1.1.2 FeedTree

FeedTree is a system for the cooperative dissemination of news. Because it is based on

the Really Simple Syndication (RSS) protocol [rss], we describe that first.

The RSS protocol encapsulates diverse news feeds in a common XML-based format. Each

feed usually includes an XML item containing a story title and sometimes a summary orabstract.

Client programs aggregate multiple feeds into a common user interface. Like theweb, RSS uses a

pull model, where clients periodically poll the news sources in which they areinterested to check

whether their feeds have been updated. Unlike the web, however, this polling is usually automated

(as opposed to click-driven). Since this automated polling can severely taxa news source, most

sources limit each client to a minimum polling period (usually 30 minutes).

As shown in Figure 1.3, FeedTree [SMPD05] uses a DHT-based multicastsystem to push

updated news feeds to clients more quickly. For each news feedf (e.g., foo.comin the figure)

in which it is interested, a FeedTree clienta registers its interest with a DHT (essentially doing a

put(f ,a)); when a client discovers a update to a feedf , it multicasts the update to all interested

clients, which it discovers using the DHT (essentiallyget(f)).

A major advantage of FeedTree is that it can be deployed today; there is noneed for

cooperation with news sites. At the same time, however, without their cooperation there are no

5

natural points of centralization in the system, and for this reason a DHT is attractive. Also, as with

Coral, FeedTree benefits from a network effect; the more clients that join the system to monitor a

particular news feed, the shorter the aggregate polling period becomes, and the quicker each client

sees each news item. Finally, as in Coral, FeedTree clients utilize bandwidth and computational

resources they already have to achieve improved performance; there isno need to pay for this

additional service.

An interesting feature of the FeedTree design is that it uses a single DHT for all news

feeds, as opposed to using a different DHT for each feed. One difficulty with DHTs is called the

bootstrap problem; in order to join the DHT, a node must know of one other node that has already

joined. By using a single DHT for all feeds, FeedTree needs only solve the bootstrap problem once,

amortizing that cost across all feeds.

1.1.3 Discussion

We chose to discuss the two applications above because they are in some senses perfect

candidate applications for a DHT. They have no natural point of centralization, they are able to

utilize resources they already have at hand, and the DHT’s scalability allows them to take advantage

of network effects. There are many other applications that benefit fromthe use of DHTs, and we

will describe several more in the course of this work. There are, of course, other applications for

which a DHT is not a good match. In Sections 2.2 and 2.3 we present a more thorough discussion

of the strengths and limitations of DHTs.

1.2 OpenDHT: The DHT as a Service

The FeedTree application above nicely illustrates a particular point; for clients interested

in some new news feed that is not yet being multicast by the system, the existence of an up-and-

running DHT to which they are already connected provides an advantage. Rather than trying to

discover another node interested in the same news feed in order to bootstrap itself into a feed-

specific DHT, a client simply does a put to join the multicast group for that feed, amortizing the cost

of solving the bootstrap problem across all feeds.

Following this reasoning, if multiple distinctfeedscan share the same DHT, it is natural

to ask under what conditions multiple distinctapplicationscan share the same DHT. In other words,

in the same way that we amortize the bootstrap problem across feeds in FeedTree, can we also

6

amortize it across applications through the use of a shared DHT?

Taking this reasoning one step further, we have also explored whether many—if not

most—DHT applications can benefit from sharing asingleDHT deployment. To test this hypoth-

esis, we have built and deployed a system we call OpenDHT. OpenDHT has been running contin-

uously on approximately 200–300 widely dispersed Internet hosts since April 2004. Each of these

hosts runs an instance of the Bamboo DHT, the DHT we built, and accepts putand get requests from

clients outside the system over RPC.

Because OpenDHT operates on a set of infrastructure nodes, no application need concern

itself with DHT deployment, but neither can it run application-specific code onthese infrastructure

nodes. This is quite different than most other uses of DHTs, in which the DHT code is invoked

as a library on each of the nodes running the application. The library approach is very flexible, as

one can put application-specific functionality on each of the DHT nodes, but each application must

deploy its own DHT. The service approach adopted by OpenDHT offersthe opposite tradeoff: less

flexibility in return for less deployment burden. OpenDHT provides a home for applications more

suited to this compromise.

Our early experience with OpenDHT indicates that a single, shared DHT deployment is in

fact broadly useful. In Chapter 5 we further describe our experience, including building applications

of our own and supporting those built by others.

1.3 Contributions

We make several contributions in this work.

1.3.1 Lookup in DHTs

The foremost function of a DHT is to partition a key space across a set of nodes. To allow

clients access to this partitioning, the DHT allows a client tolookupthe node to which any key is

mapped; for brevity, we call the challenge of providing this functionality the lookup problem. In

itself, the problem is simple, and most DHTs handle it in a straightforward way.For example, in

one approach, each node is assigned a key at random, and each key ismapped to the node to whose

key it is numerically closest.

The lookup problem becomes more interesting when new nodes join the systemor existing

nodes fail, and the DHT must re-partition the key space dynamically. We testedseveral early DHT

7

implementations under a continuous process of arrivals and failures, andseeing that none of them

performed as well as we expected, we built a new DHT called Bamboo to experiment with doing

better. We made several important discoveries.

Node failure, in particular, is difficult. All DHT algorithms specify how failures should

be handled, but since DHTs run on the wider Internet, it is often difficult inan implementation

to quickly distinguish the failure of a node from a failure or congestion event on the path to that

node. In our work, we have shown that two basic techniques are needed to surmount this prob-

lem, and we demonstrate the importance of these two techniques with comparisonsto other DHT

implementations.

First, a DHT should route around suspected failures quickly, in much less timethan is

needed to confirm that they are actual failures. The overlay networks built by DHTs have many

redundant paths between two nodes, and when a primary path appears faulty, it is better to route

quickly through some secondary path than to wait for the primary one to recover.

Second, DHT nodes should not recover from the failure of their neighbors in the overlay

reactively, but periodically. Often times a suspected failure is in fact only a period of congestion

in the network, and in reacting directly to that suspected failure by trying to find a replacement

neighbor, a node runs the risk of further increasing the congestion thatled to it. In the worst case,

this reaction can lead to a positive feedback cycle in which a node overloads some network path,

partitioning the overlay. In contrast, by recovering periodically, a DHT node decouples the rate

of its own recovery traffic from the congestion it experiences, preventing such positive feedback

cycles.

Third, the process of new nodes joining the network presents its own set of problems.

When a new node joins, the network must re-partition the key space to give that node a share, and

the new node must find suitable neighbors within the overlay network. For performance reasons,

most DHT algorithms endeavor to choose some of a node’s neighbors to be nearby in network

latency, and the algorithms to accomplish this task are often complicated and difficult to implement.

In our work we demonstrate that much of this complexity is unnecessary, thatsimpler methods

based on random sampling do just as well for the same bandwidth cost.

Our contributions concerning lookup in DHTs appear in Chapter 3.

8

1.3.2 Storage in DHTs

While the lookup interface is the most general one offered by DHTs, many client ap-

plications prefer the higher-level put/get interface provided by traditional hash tables. In a simple

implementation of this interface, to put a value into the DHT, a node sends a message containing

the given key and value to the node discovered by looking up the key. That node then stores the key

and value in a hash table in its local memory or disk. To perform a get, a message containing the

key is sent to the node discovered by looking up the key; that node then does a get against its local

hash table and sends back any values it finds.

Another high-level interface that is often built above lookup is called Decentralized Object

Location and Routing, or DOLR [ZHS+04]. In this interface, clients inform the DHT as to what

objects they are storing; other clients can then query the DHT to find clients storing objects in which

they are interested. DOLR is usually implemented in a manner similar to put/get; essentially, the

DHT just stores pointers to objects rather than the objects themselves.

In implementing either the put/get or DOLR interface over DHT lookup, the main addi-

tional functionality that is needed is the storage of values or pointers underkeys. We will thus refer

to this general problem as thestorageproblem.

As with lookup, the primary challenges in the storage problem are the failure of existing

nodes and the arrival of new ones. To prevent data loss due to node failure, the DHT must store

data redundantly across multiple nodes. When nodes fail, this redundancymust be restored. While

we were not the first to propose this idea, we developed one of the first efficient mechanisms for

implementing it.

Our contributions concerning the storage problem appear in Chapter 4.

1.3.3 OpenDHT: A Public DHT Service

As noted above, many applications make such generic use of a DHT that it becomes

attractive to share a single DHT deployment between them. Along these lines, we have developed

and deployed OpenDHT, a public DHT service running on the PlanetLab testbed [B+04] for the

last 16 months. OpenDHT is shared both among applications and among clients,and each type of

sharing raises a new design problem.

An Interface for a shared DHT For a DHT to be shared effectively by many different applica-

tions, its interface must balance the conflicting goals of generality and ease-of-use. Generality is

9

necessary to meet the needs of a broad spectrum of applications, but theinterface should also be

easy for simple clients to use.

The lookup interface described above, while clearly quite general, is troublesome in a

shared service. In particular, the strength of the lookup interface is the application-specific code that

is installed in the DHT. For example, when implementing put/get on top of lookup, functionality is

added to each DHT node to handle put and get messages, manage data redundancy, etc. Distributing

the code for arbitrary applications to all nodes in a DHT, and running that code securely such that

applications do not interfere with each other, is a challenging problem.

In contrast, the put/get interface is less flexible, allowing no access to application-specific

code. This lack of flexibility limits the spectrum of applications it can support, but it frees the DHT

from dealing with the vagaries of application-specific code. In the design of OpenDHT, we place

a high premium on simplicity. We want an infrastructure that is simple to operate, and a service

that simple clients can use. Thus the storage model, with its simple put/get interface, seems most

appropriate.

To get around the limited functionality of the put/get interface, we use a novelclient li-

brary, Recursive Distributed Rendezvous (ReDiR), which we describe in detail in Section 5.2.2.

ReDiR, in conjunction with OpenDHT, provides the equivalent of a lookup interface for any arbi-

trary set of machines (inside or outside OpenDHT itself). Thus clients usingReDiR achieve the

flexibility of the lookup interface, albeit with a small loss of efficiency (which we describe later).

Storage allocation in a shared DHT The second type of sharing we consider is sharing between

mutually untrusting clients. In offering a put/get interface, OpenDHT is essentially a public storage

facility. As observed in [RH03, BMP03], if such a system offers the persistent storage semantics

typical of traditional file systems, the system will eventually fill up with orphaned data. Garbage

collection of this unwanted data seems difficult to do efficiently.

OpenDHT must thus carefully manage the allocation of its storage resourcesbetween

clients. While ample prior work has investigated bandwidth and CPU allocation in shared settings,

storage allocation has been studied less thoroughly. In particular, there isa delicate tradeoff be-

tween fairness and flexibility: the system shouldn’t unnecessarily restrict the behavior of clients by

imposing arbitrary and strict quotas, but it should also ensure that all clients have access to their fair

share of service.

10

Experiences with a shared DHT In addition the technical contributions above, we have also

gained a good deal of experience particular to running a shared DHT deployment over the last 16

months. Many of the design decisions we initially felt would be most important haveturned out

to matter much less than others we did not expect. Simplicity and ease-of-use, for example, have

shown to be of paramount importance for adoption.

Our experiences designing, deploying, and running OpenDHT are described in Chapter 5.

1.3.4 DHT Practicalities

Our final two contributions in this work concern how to deal with two realities ofdis-

tributed systems rarely explored by prior work: the non-transitivity of Internet connectivity, and the

problem of correct, but arbitrarily slow nodes. We cover each in a short chapter of its own.

Non-transitive connectivity A universal, but unstated, assumption of all DHT algorithms of

which we are aware is transitivity of connectivity in the public Internet. In other words, if node

A can contact nodeB, and nodeB can in turn contact nodeC, then it is always assumed to be the

case that nodeA can also contact nodeC. In reality, it is well known that the Internet does not exhibit

this property; while it is true in general that any two hosts can communicate with each other even-

tually,1 it is also the case that failures and misconfigurations of the Internet’s routing infrastructure

can lead to periods of hours or longer where the transitivity of connectivity is violated.

As one might expect, overcoming the violation of this fundamental assumption of DHT

designs requires modification of many parts of the system, from the lookup layer up through the

storage layer. Nevertheless, the problems are not insurmountable; although we routinely see vi-

olations of transitive connectivity in our PlanetLab deployment, OpenDHT is nonetheless able to

successfully perform puts and gets during these periods. We describeour work on this problem in

Chapter 6.

Arbitrarily slow nodes A persistent problem with our OpenDHT deployment has been that the

distribution of the latencies of get operations has a very long tail. As one mightexpect, this tail is

caused by a few, arbitrarily slow PlanetLab nodes. We have observed disk reads that take tens of

seconds, computations that take hundreds of times longer to perform at some times than others, and

1Note that we are only talking here about hosts on thepublic Internet; of course we expect hosts behind network
address translators (NATs) or firewalls to exhibit some degree of permanent non-transitive connectivity.

11

internode ping times well over a second. Furthermore, the set of slow nodes is not constant over

time, so we cannot very well “cherry pick” a set of good nodes on whichto run OpenDHT.

While it is tempting to blame OpenDHT’s performance problems on PlanetLab, anec-

dotal evidence suggests that the problems we have observed with PlanetLab are common in other

large-scale systems. Instead, it seems, the difference between PlanetLab and other large distributed

systems is only the size of the system at which such effects are observed,not the fundamental nature

of the effects themselves.

Since it seems the problem of slow nodes may be endemic to large distributed systems,

then, we believe the most appropriate response to it is to modify our system to be resilient to such

behavior. We demonstrate our success with such techniques in Chapter 7.

1.4 Assumptions

Before continuing, we explicitly state two assumptions that limit the scope of this work.

First, we do not discuss the design or implementation of strongly consistent distributed

systems. Instead, Bamboo and OpenDHT offer only eventually consistentsemantics, in the style

of Bayou [PST+97]. This approach is in line with the majority of the literature on DHTs, although

there are notable exceptions [MGM05, LMR02, RL03]. We view the development of DHTs with

stronger semantics as important and valuable work, but note that there arenumerous applications

for which eventual consistency is sufficient; the list in Table 5.4 provides several examples. As such,

we leave stronger consistency to future work.

Second, a major benefit of DHTs is that they are applicable in situations in which there

is no natural point of centralization. In the case where such a point exists, one can of course offer

the same or similar semantics provided by a DHT with a centralized system, either byrunning a

DHT on a cluster or by the use of some other architecture. As clusters growto the scale of tens of

thousands of nodes, the use of DHT-like techniques within them may become an interesting area of

research. In this work, however, our goal is to simplify the construction of scalable systems using

existing, distributed resources, and we consequently leave the case of centralized systems to future

work.

12

1.5 Summary

Distributed hash tables are a promising building block on which more sophisticated dis-

tributed applications can be built. In this thesis we explore several important problems in their

design, implementation, and deployment. We start in Chapter 2 by providing important background

information related to DHTs. Next, we cover two fundamental challenges—thelookup and storage

problems—in Chapters 3 and 4, respectively. The solutions to these two problems are implemented

in Bamboo, the DHT we designed and built. We then explore how a single deployment of Bam-

boo can be shared as a public service among multiple applications, an idea we call OpenDHT, in

Chapter 5. Running the OpenDHT service over time has also exposed us to several interesting prac-

ticalities that arise in running a large DHT deployment on the Internet (ratherthan in simulation, for

example), and we cover two of these in Chapters 6 and 7. Finally, we conclude in Chapter 8.

13

Chapter 2

Background

This chapter provides an introduction to DHTs. To make the discussion concrete, we

begin with a high-level description of the Bamboo DHT as an example. We then use this description

as a starting point to review the advantages and limitations of DHTs, and we conclude the chapter

with a survey of related work in the area.

2.1 The Bamboo DHT

The key space used by Bamboo isZ2160, the integers modulo 2160. Bamboo assigns each

node a unique identifiern∈ Z2160 uniformly at random.1 For convenience, we will name nodes by

their identifiers. Furthermore, let pred(k) be the node whose identifier most immediately precedes

k in Z2160, and let succ(k) be the node whose identifier most immediately succeedsk. Bamboo

partitionsZ2160 between the nodes in the DHT by mapping each keyk onto the noden that minimizes

|k−n| mod 2160, or onto succ(k) if there are two such nodes. The node onto whichk is mapped is

called theroot for k.

To maintain this mapping, each Bamboo noden keeps track of both pred(n) and succ(n);

we call these two nodes itspredecessorandsuccessor. By knowing its predecessor and successor

a node can compute exactly which keys it is responsible for under the mapping. Since the set of

predecessor and successor links form a circular doubly-linked list between the nodes in the overlay,

we often refer to the network as aring.

The process of computing onto which node a key is mapped is calledlookup. To perform

1In practice, we assign a node with IP addressa listening on portp the identifierH(a· p), whereH is the SHA-1 hash
function and· represents concatenation.

14

10...

111...

110...
0...

Figure 2.1:A Bamboo node’s neighbors.A node’s neighbors are divided into itsleaf set, shown as
dashed arrows, and itsrouting table, shown as solid arrows.

a lookup on keyx, a node can simply route a message around the ring until it reaches the rootfor x,

but this technique is neither efficient nor robust. It is inefficient because a lookup may be forwarded

all the way around the ring before reaching the root. It is fragile since theloss of even a single

node in the DHT will break the ring, rendering some lookups impossible. Bamboo fixes these two

shortcomings through the use of two separate sets of neighbors maintained by each node. Both sets

are illustrated in Figure 2.1.

The first set of these neighbors increases the robustness of the mapping by adding redun-

dancy to the ring. Let predi(k) be the result of applying pred tok i times (fori > 0), and let succi(k)

be defined similarly. Theleaf setof a noden is the set of nodes predi(n) and succi(n) for i ∈ [1, `].

We call` theradiusof the leaf set.

The second set of neighbors a node maintains allows it to perform lookupsmore effi-

ciently. A node’srouting tableis a set of nodes whose identifiers share successively longer prefixes

with its own identifier. Given some baseB, and for every prefixp of n, noden has a neighbor with

prefix p ·d for each digitd ∈ [0,B), where· represents concatenation (if such a node exists). As

illustrated in Figure 2.1, forB= 2 this method of choosing routing table entries corresponds to each

node knowing some node on the opposite half of the ring, on the opposite quarter of its own half,

on the opposite eighth of its own quarter, etc.

A Bamboo node performs a lookup on keyk by matching as long a prefix ofk as it can

15

011...

111...

0...

01...

01101...

Figure 2.2: A lookup in Bamboo.To find the node closest to identifier 01101, the node whose
identifier starts with 111 sends a lookup message to its neighbor whose first digit is 0. This node
then forwards the query to its neighbor whose first two digits are 01, and from there the node is
forwarded to the neighbor whose first three digits are 011. A final hop through a leaf set neighbor
locates the closest node.

by following routing table links, then routes the additional distance tok’s root by following leaf set

links. This process is illustrated in Figure 2.2.

To join an existing DHT, a new noden uses any existing node to find the root forn, from

which it can retrieve its leaf set. Moreover,n and the root forn likely share a long prefix, in which

case they will share many routing table entries. All other routing table entries can be filled by doing

lookups on keys with the appropriate prefixes.

A simple implementation of the put function of a traditional hash table stores a key-value

pair with keyk the nodes predi(k) and succi(k) for i ∈ [1, `′], where`′ ≤ `, the leaf set radius. These

nodes are easily discovered by doing a lookup onk to find its root, and then asking the root for its

leaf set. Likewise, a simple implementation of get for a keyk does a lookup onk to find the root

and asks it for all the values it has stored underk.

2.2 Advantages of DHTs

With this simple description of Bamboo, we now enumerate the advantages of DHTs.

First, we note that the system is completely decentralized. Any node is capableof performing a

16

lookup, put, or get on any key, and to join the DHT a new node need only know of one other existing

node. The importance of this advantage is illustrated by the fact that many applications in which

we wish to use a DHT, such as Coral and FeedTree, are by their nature completely decentralized,

allowing for no central point of organization.

Second, as long as̀= O(logN), each node maintains only a logarithmic number of neigh-

bors in the network. This feature of DHTs is important because in order to detect the failures of its

neighbors, a DHT node must periodically probe them for liveness; the bandwidth usage of the DHT

thus scales linearly in the number of neighbors per node.

Third, the cost of lookups, puts, and gets scales logarithmically in the size ofthe network.

To see that this is the case, note that we expect to need logBN digits to uniquely specify any given

node, and that at any given point, there is aB−1
B chance that the current node is a suitable next hop

(i.e., it already has the required next digit). Since the cost of operations grows slowly in the size of

the network, we can increase the capacity of the network by merely adding nodes.

Furthermore, looking back at Figure 2.1, we can see that for one neighbor, a node can

choose from roughly half the nodes in the network. For another neighbor, it chooses between a

quarter of the nodes, and so on. Proximity neighbor selection (PNS) is the technique by which

a node chooses within each group to minimize the network latency between it andits neighbors.

Dabek et al. [DLS+04] have shown that using PNS the average latency of lookups can be made

constant in the size of the network.

Fourth, the network is very robust. For` > 1, the ring can survive the failure of any arbi-

trary `−1 nodes without a disconnection in the ring (i.e., the situation where some node either has

no live predecessors or successors). Moreover, as shown by Stoica et al. [SMK+01], if ` = O(logN)

and each node in the network fails is probability 1/2, with high probability no disconnection will

occur. Likewise, any arbitrary 2`′− 1 nodes can fail without data loss, and if all nodes fail with

probability 1/2, no data will be lost with high probability so long as 2`′ = O(logN).

Finally, we note that the system is almost completely self-organizing and self-maintaining.

When started, each node must somehow discover some other node throughwhich to join the net-

work, but no other configuration information is necessary.

2.3 Limitations of DHTs

As described by Blake and Rodrigues [BR03], there are three factorsthat limit the per-

formance of a DHT: the total amount of data stored, the bandwidth available toeach node, and the

17

turnover in the system’s membership. Note that the partitioning of the key spacein a DHT is entirely

a function of the nodes that comprise the system at any given time. As such,whenever a new node

joins the system or an existing node fails, the partitioning changes, and data must be moved so that

get requests continue to be routed to the nodes storing the desired data.

Let us consider the effects of new nodes joining and existing nodes leaving separately. As

discussed above, DHTs store data redundantly for fault tolerance. Following Blake and Rodrigues,

let us denote the factor of redundancy asr, the unique data stored in bytes asD, the total data stored

in bytes asS= rD, the size of the system asN, and the average amount of time each node is part of

the system in seconds asT.

When an existing node leaves the system, it takes the data it has stored with it. This

redundancy must be restored by copying some data onto the remaining hosts. Overall, the amount

of bandwidth used per node to handle such failures isS/NT bytes per second (see [BR03] for a

derivation). We note that this cost is not unique to DHTs, but applies toany replicated storage

system, and it implies that any such system must either have a relatively stable membership, a great

deal of available bandwidth, or store only a small amount of data.

The cost of nodes joining, on the other hand, is unique to DHTs. Becauseof the strict

partitioning that maps data items to nodes, DHTs also move data when a new node joins the system.

Overall, the amount of bandwidth used per node to handle such failures is also S/NT bytes per

second. This cost cannot be removed without changing the nature of theDHT, but as it is no larger

than the cost of nodes leaving, it does not fundamentally alter the range ofenvironments where

DHTs are applicable.

So far we have considered only the cases where nodes join the system for the first time or

leave the system forever. From this analysis, it is clear that to store a largeamount of data in the

DHT, nodes must remain part of the system for a long time or the bandwidth costs dominate. Under

many circumstances this seems like a reasonable requirement; in the Coral system, for example,

each participating web site will presumably remain part of the system for monthsor longer. It is

unreasonable, however, to expect each of these sites to remain continuously available for the entirety

of that time. Machines may crash, for example, or they may be rebooted afterthe installation of

security patches.

To their peers, however, such temporary failures are indistinguishable from permanent

ones, and a naive DHT implementation may trigger recovery mechanisms to account for them. If

a temporary failure is indeed short lived, the bandwidth used during this unnecessary recovery is

wasted. In Section 4.6.3 we discuss mechanisms that can be used to largely eliminate the cost of

18

these temporary failures.

In summary, DHTs are suitable for two important domains. First, a DHT is appropriate

for providing a small amount of data with a high degree of availability across aset of peers with

dynamic membership. Examples of such applications include all those where a DHT is primarily

used as an index, such as Coral, or where it is used primarily for communication, as in FeedTree.

Second, a DHT can also be used to provide highly available access to a large data repository with

low maintenance cost, but only if the membership of such a system is relatively stable. OpenDHT,

OverCite [SCL+05], and UsenetDHT [SDR04] are all good examples of this latter use of a DHT.

2.4 Related work

We now provide an overview of related work in this area in order to give context to this

thesis. Here we focus on the larger issues that distinguish our work fromothers’. We will cover

more detailed differences where appropriate throughout the rest of thiswork.

2.4.1 DHT Geometries

The pattern of neighbor links in the overlay network of a DHT is commonly calledits

geometry[GGG+03]. In particular, the term geometry is used to speak specifically about thisgraph

itself, rather than the graph maintenance or routing algorithms used by the DHT. Because DHTs with

different geometries can use the same routing algorithm (e.g., greedy progress in the key space),

geometry is a useful first metric with which to distinguish one DHT from another.

The Original DHT Geometries The first group of DHT geometries that were proposed

all provided the same rough cost-performance tradeoff. Chord [SMK+01], Pastry [RD01],

Tapestry [ZHS+04], and Kademlia [MM02] all use a graph where each node hasO(logN) neighbors

and a lookup operation takesO(logN) hops. CAN [RFH+01] uses a graph where each node hasd

neighbors and a lookup takesO(dN1/d) hops; ford = logN, a CAN node hasO(logN) neighbors

and takesO(logN) hops to perform a lookup. Bamboo provides the same tradeoff as these DHTs,

as it uses the Pastry geometry. Of these original DHTs, the Chord, Pastry, and Kademlia geometries

have found wide use in widely deployed systems [SAZ+02,SDR04,M+03,RGK+05,edo,bit].

Constant-State Geometries The next group of DHT geometries fell on different sides of this

tradeoff. First, by using a geometry based on a de Bruijin graph, Kaashoek and Karger pre-

19

sented a DHT called Koorde that maintains a constant number of neighbors per node yet still per-

forms lookups in aO(logN) hops [KK03]. Nonetheless, they showed that for fault-tolerance, it is

still desirable that each node haveO(logN) neighbors. In this case, Koorde performs lookups in

O(logN/ log logN) hops.

While Koorde is thus capable of performing lookups in less hops than the original group of

DHTs, it has very little choice in neighbors, preventing it from selecting its neighbors for proximity.

In contrast, the original DHTs (including Bamboo) use PNS to perform lookups intimeconstant in

the size of the network (though still using a logarithmic number of hops) [DLS+04]. While they are

thus interesting from a theoretical point of view, we do not expect to see many DHTs based on de

Bruijin graphs used in practice.

Constant-Hop-Count Geometries The other direction that DHT geometries have moved is to-

wards using a larger number of neighbors to perform lookups in a numberof hops constant in the

size of the system. DHTs in this group include Kelips [GBL+03] and the one-hop design of Gupta,

Liskov, and Rodrigues [GLR04] (which we will subsequently call “OneHop” for brevity).

Kelips divides the membership of a DHT intok = O(
√

n) affinity groups. Each node

maintains state about all the nodes in its own affinity group, as well as state about a few nodes in

each other affinity group. Lookups can thus be performed in two hops—one to the correct affinity

group and one within that group. To manage this larger number of neighbors efficiently, Kelips uses

epidemic propagation both within and between groups. When this state becomesstale, Kelips may

take more than two hops to resolve a lookup, but simulations show that this casecan be limited. The

designers of Kelips argue that it should scale to around 100,000 nodes.

The OneHop algorithm goes even further than Kelips by maintaining state about every

node in the network at every other node. The trick, of course, is how to propagate that information

efficiently. Like Kelips, the OneHop algorithm uses epidemic propagation of membership changes.

Compared to Kelips, however, its propagation graph is more structured. The OneHop system is

divided intok = O(
√

n) slices, which are roughly equivalent to Kelips’ affinity groups. Each slice

has aslice leader, and communication between slices occurs only between leaders. Each sliceis

further subdivided into several units, each of which has aunit leader, and communication between

slice leaders and the nodes in the slice occurs only through unit leaders. Simulations show that the

OneHop design uses reasonable bandwidth, although the bandwidth requirements for slice leaders

indicate that they should be chosen carefully. The OneHop authors also present a two-hop design

using the same geometry that they believe will scale to a few million nodes.

20

Despite their apparent promise, we are not aware of any deployed systems that use constant-

hop DHTs such as Kelips or the OneHop algorithm.

A Variable-State Geometry The DHT geometries above present a tradeoff between the band-

width used in maintaining neighbor links versus the number of hops required toperform a lookup.

In situations where bandwidth is scarce, the constant-state geometries are more attractive. In con-

trast, constant-hop geometries are preferred in situations where bandwidth is ample. A natural ques-

tion thus arises as to whether it is possible to design a DHT geometry that adaptsto the bandwidth

available to deliver the fewest hops possible in any situation. Accordion [LSMK05] is a proposed

design for a variable-state geometry of this form. While it has only been simulated to date, early

results are promising.

2.4.2 Lookup Practicalities

The geometry of a DHT is only one component of its performance in practice;the routing

algorithm used is often just as important. There are two practical issues thatmake routing algorithms

vital: the computation of timeouts on routing messages, and the non-uniform cost of hops in the

network.

Timeout calculation In a any large distributed system, the sheer number of nodes ensures that

at any given time some nodes will be down, others will be in the process of crashing, and still

others will just be slow (due to temporary load, faulty components, etc.). Furthermore, studies of

existing peer-to-peer systems show even higher rates of failure than other, similarly sized distributed

systems [SGG02, CLL02, SW02, BSV03, GDS+03]. If failures are common, and detecting and

routing around a failed node takes several seconds, the cost of failures can easily come to dominate

the cost of a lookup.

In Chapter 3 we describe our work for handling failures along the lookuppath in DHTs.

Our primary observation is that through continuous, active probing of its neighbors in the graph,

a DHT node can compute good values for the time it expects each neighbor to take to process a

lookup message. Messages that are not acknowledged within this period can quickly be resent

along an alternate path.

In practice, to adequately guard against false positives, message timeoutsgenerally need

to be some small multiple of average round-trip time, and even a single timeout can add significantly

to query latency. One approach to limiting the effect of timeouts on end-to-end lookup latency is to

21

011...

0...

111...

01101...

01...

Figure 2.3:Iterative lookup.An iterative lookup involves the same nodes as a recursive one, but
instead of forwarding the message, each intermediate node responds to thesource with the address
of the next hop.

parallelize the lookup; by routing along several paths simultaneously, a DHTcan use extra resources

to increase the number of timeouts that must occur in order to stall a lookup.

A simple way to parallelize lookups is to issue each lookup from multiple source nodes in

the DHT. As discussed in Chapter 7, the effect of such parallelization is dramatic in our OpenDHT

deployment on PlanetLab.

The lookup process we have described so far (and illustrated in Figure 2.2) is commonly

called recursive lookup. An alternate lookup algorithm that is useful for parallelization is called

iterative lookup. As illustrated in Figure 2.3, an iterative lookup contacts the same nodes in the

DHT as a recursive lookup for the same key, but the lookup process is directed at all points by the

source node; the lookup is not routed through the DHT. Since one node isin charge of the lookup at

all times, it is easy to parallelize: the source node just keeps several RPCsactive at any time. This

approach to lookup was first proposed in Kademlia, and we show its effectiveness in Chapter 7.

Although parallel iterative lookup can limit the effect of timeouts on the lookup as a

whole, it introduces a new problem: since the nodes contacted in during the lookup process are

often not the immediate neighbors of the source node, it is not immediately clear how to compute

timeout values for messages sent to them. Dabek et al. [DLS+04] showed that network coordinates

computed using the Vivaldi [CDK+03b] algorithm are appropriate for this purpose. In Chapter 3

we compare the quality of timeouts computed using Vivaldi versus those computed by direct mea-

22

surement.

Lookup Hop-Count vs. Latency Our earlier categorization of DHT geometries above focused

primarily on the number ofhopsrequired to perform a lookup. From the point of a user, however, a

more natural metric is the end-to-endlatencyof a lookup. In other words, it is not just the number

of hops that should be considered, but also the latency of each hop.

By the metric of end-to-end latency, it is not immediately clear that greedy routing in

the identifier space is optimal. DHash [DLS+04] uses a variant of Chord routing where each node

picks its next hop by computing the expected latency to complete a lookup through each neighbor

and chooses the neighbor that minimized this latency. This estimation is based on the latency to

the neighbor itself, plus the average latency in the overlay times the expected number of hops that

would remain after contacting that neighbor. The number of hops remaining isestimated based on

the observed density of the nodes in the identifier space.

Gummadi et al. [GGG+03] explored a technique the calledproximity route selection

(PRS), whereby a lookup query was routed at each hop to the neighborclosest in network latency

that made progress in the identifier space. The authors show that PRS outperforms greedy routing

in a simulation of Chord using a realistic network latency distribution, but they didnot account for

the additional cost of processing at each node. As the PRS route is likely toinvolve more hops than

the greedy one, this per-hop processing cost can be significant in real deployments.

In Chapter 7, we present the results of experiments that explore the valueof PRS in the

OpenDHT deployment on PlanetLab. We show that while PRS does indeed provide some benefit,

it is not optimal. On PlanetLab, per-hop processing costs are non-negligible, so a hybrid of greedy

and proximity-based routing works best. This hybrid routes greedily with respect to low-latency

neighbors, but weights proximity more heavily for high-latency ones.

2.4.3 DHT Storage

As discussed in the introduction, while many DHT applications use the relativelyprim-

itive lookup interface, others want a higher-level interface to the DHT. One example of such an

interface is the traditional put/get interface offered by hash tables. The implementation of put/get

atop lookup is conceptually simple: to put, a node looks up the root of a key and sends it a put

message; to get, it looks up the root and sends it a get message. As with lookup, however, the diffi-

culty of implementing put/get in practice is in handling failures. The main additional functionality

23

of put/get over lookup is thus the fault-tolerant storage of key-value pairs. As other DHT interfaces

(e.g., DOLR [ZHS+04, DZD+03]) also require storage within the DHT, we refer to the problem in

general as the storage problem. There are two main approaches in the literature to handling it.

The Soft-State Approach The first approach, which we will call thesoft-stateapproach, places

the responsibility for maintaining the availability of each key-value pair outside of the DHT. To keep

its key-value pairs available, a client of a soft-state DHT must re-put them before all of the nodes

onto which they were originally replicated fail. Moreover, it must also re-put them when enough

new nodes join the DHT such that it no longer maps the key onto any of the nodes where replicas

were originally stored.

Despite these complications, the soft-state approach is very easy to implement inthe DHT,

and it is therefore attractive in applications where the burden on clients is small. For example, in

i3 [SAZ+02], a DHT is used to forward packets to clients outside the DHT. To enable this function-

ality, a client puts its IP address into the DHT under a particular key. Other clients pass messages to

the DHT with this key, and the DHT forwards them to whatever IP address is currently stored under

that key. Because each client only has one IP address, it can re-putthat address frequently at low

cost. Furthermore, the DHT can garbage collect old values by expiring any addresses not put in the

last minute or so.

In other cases, the soft-state approach is less attractive. For example, aCoral node may

have a very large web cache, and it would take considerable cost to re-put each of the entries in

its cache index into the DHT every minute. Alternatively, it could keep track ofwhich DHT nodes

stored its values and monitor them, but this approach still scales at best linearly in the size of the

DHT or the number of values, whichever is larger.

The Managed Approach A more efficient solution in such cases is to have the replicas for any

one value monitor each other, an approach we call themanagedapproach. In this approach, the

DHT is responsibly for storing data redundantly and for restoring that redundancy after failures.

By the nature of the DHT’s partitioning function, nodes whose identifiers are adjacent in the key

space are replicas for many of the same values. This arrangement presents the possibility of a

maintenance protocol whose total bandwidth usage is proportional to the number of nodes in the

system, a marked improvement from common implementations of the soft-state approach, which

use bandwidth proportional to the number of values stored.

The managed approach to DHT storage was first proposed by both the Cooperative File

24

System [DKK+01] and PAST [DR01], two early DHT storage systems, but neither presented an

efficient solution for implementing it.

In Chapter 4 we present an algorithm for storage management in which each node uses

only a constant amount of bandwidth per unit time when allr replicas for a set of values are in sync,

and it uses at worst a cost ofO(r logn) to find a missing value on one of the nodes in such a set,

wheren is the total number of values replicated. Moreover, in many cases it discovers many such

inconsistencies at once, amortizing thisO(r logn) cost across the reconciliation of many replicas.

This algorithm was developed concurrently with, but independently of, that in Cates’ thesis [Cat03];

we discuss the differences in detail in Chapter 4.

An interesting variation on the managed approach is used in the Beehive system [RS04b],

which replicates data very widely in order to reduce get latency. Using a distribution of the popular-

ity of items, Beehive replicates each item such that the average number of hops performed per get in

the system is below 1. This approach requires a great deal of replication; one example in [RS04b]

suggests a replication factor of 37. The cost of this replication is born notonly by the storage re-

sources of the system, but also by the network resources, as each update to a replicated item must

be propagated to each replica. Nevertheless, the resulting improvements in latency may be justified

in a system storing a small number of items that change relatively rarely.

2.4.4 Sharing A DHT Between Applications

As discussed in the introduction, there are two senses in which a DHT can beshared:

among applications and among clients. We discuss sharing between applications first.

Facilitating bootstrap As discussed in the introduction, by using the same DHT for all feeds,

the FeedTree application need only bootstrap itself once; knowing a client for a specific feed is

sufficient to find clients for any other feed. This bootstrap problem extends to DHTs in general: in

order to join a particular DHT, a new node must know of at least one existingnode in that DHT.

To discover such a node, some form of lookup service is needed, yet scalable lookup is exactly the

service provided by DHTs.

A common solution to the bootstrap problem uses the DNS system to locate existing

nodes. In this solution, a small set of DNS servers are registered as the name servers for a domain.

These same servers monitor the live nodes in the DHT, and they use this monitoring information to

return only live nodes’ IP addresses as address records in response to DNS queries. This technique

25

is used in Coral, for example. Unfortunately, most kernel DNS clients will only access remote DNS

servers on port 53, limiting the number of DNS servers that can run on a shared testbed such as

PlanetLab. It is thus difficult for every DHT-based application to solve thebootstrap problem using

DNS.

Another approach to solving the bootstrap problem is the idea of sharing a single DHT

between all DHT applications. The earliest such example of which we are aware is the “One Ring”

proposal of Castro et al. [CDKR02]. In this proposal, each node in a DHT is both a member of its

application-specific DHTanda single, global DHT. This global DHT is used to provide a number of

services, including a file store, multicast, and a bootstrap service for the application-specific DHTs.

Essentially, the IP addresses of several bootstrap nodes are stored under a service-specific key for

each application DHT, and new nodes lookup these bootstrap nodes to join agiven ring.

The One Ring approach eliminates the need to use DNS for each application-specific

DHT, but it does not balance the bootstrapping load well. Only the small set of nodes registered

with the global DHT are available as bootstrap hosts, and the node (in the global ring) that stores

this list for each application is saddled with all of the load for looking up this setof bootstrap nodes.

While caching can be used to eliminate some of this load, it will also reduce the freshness of the

information returned.

Two algorithms designed to address the limitations of the One Ring approach have been

proposed: Karger and Ruhl proposed Diminished Chord [KR04], andwe proposed Recursive Dis-

tributed Rendezvous (ReDiR) [KRRS04].

Diminished Chord is a variant of the Chord protocol that allows several Chord applications

to share a single Chord ring. In this design, the lookup function is parameterized by application; a

lookup for keyk in applicationa finds the node in the ring running applicationa that most immedi-

ately succeedsk in the identifier space. As with the standard Chord algorithm, these lookups take

only O(logN) hops in a global network ofN nodes, but unlike the standard algorithm, the graph for

Diminished Chord cannot be built using proximity neighbor selection. In practice, then, we expect

lookups in Diminished Chord to be slower than those in standard Chord using PNS.

In contrast to Diminished Chord, the ReDiR algorithm is a client-side library thatuses

only the put and get functions of any DHT implementation to provide an application-specific lookup

function. In the worst case, this lookup requiresO(logN) gets to find the successor of a given key,

but on average it requires only a constant number of gets to do so. Sincethese gets can also be

optimized using PNS, we expect ReDiR to be at least as fast as Diminished Chord in practice.

ReDiR is discussed in more detail in Chapter 5.

26

In comparison to the One Ring proposal, both Diminished Chord and ReDiR spread the

bootstrapping load for each application across all of the nodes in the global DHT and all of the

nodes in the application. As such, once a node can access the global ring, the bootstrapping process

for any individual application is just as scalable as the remainder of the DHT.

The DHT as a service Techniques like those of the One Ring, Diminished Chord, or ReDiR make

deploying a new DHT application easier by solving the bootstrap problem. Nonetheless, a new DHT

application must still deploy some nodes; if there is not at least one node online at any time, there

will be no one for new nodes to bootstrap through. While it seems somewhat ridiculous that there

could exist an interesting application that both needed the scalability of a DHT and simultaneously

could experience periods of without any active members, practical issues make the idea not as far

fetched as it sounds. For example, what if all the active members of an application are behind NATs,

and thus unable to contact each other?

To address this problem, we take an even more radical approach than thosedescribed

above: by running a DHT as an Internetservice, we make it possible to build DHT-based applica-

tions without deploying any DHT nodes at all. We discuss the resulting system,called OpenDHT,

in detail in Chapter 5.

2.4.5 Sharing A DHT Between Clients

In sharing a DHT among clients, the primary difficulty is that of resource allocation. A

faulty or malicious client, for example, may perform enough puts to fill the DHT’s storage resources

or enough gets to overwhelm the bandwidth available to some nodes in the DHT.If this situation

is not prevented, other clients will experience reduced service. While there are known techniques

for allocating computation and network resources (e.g. [DKS89, DC99, NL97]), the allocation of

storage is less well understood.

One early approach to storage allocation in a shared system was introduced in the

Palimpsest system [RH03]. Palimpsest uses a novel revolving-door technique in which, when the

disk is full, new stores push out the old. To keep their data in the system, clientsre-put frequently

enough so that it is never flushed; the required re-put rate depends on the total offered load on that

storage node. Palimpsest uses per-put charging, which in this model becomes an elegantly simple

form of congestion pricing to provide fairness between users (those willing to pay more get more).2

2Referring back to Section 2.4.3, we note that Palimpsest presents a novel reason for using soft-state storage manage-
ment in a DHT.

27

While we agree with the basic premise that public storage facilities should not provide

unboundedly persistent storage, we are reluctant to require clients to monitor the current offered

load in order to know how often to re-put their data. This adaptive monitoringpresents the same

complications as the soft-state model of DHT storage discussed above. Moreover, Palimpsest relies

on charging to enforce some degree of fairness; since OpenDHT is currently deployed on PlanetLab,

an environment where such charging is both impractical and impolitic, we wanted a way to achieve

fairness without an explicit economic incentive. Our solution to this challenge, called Fair Space-

Time (FST), is discussed in Chapter 5.

Another system that is exploring the notion of shared storage in the wide area is the

Internet Backplane Protocol (IBP) [BMP03]. While this system is not based on a DHT, our FST

algorithm is applicable to it as well. Furthermore, we hope that the existence ofthe IBP system will

encourage the development of alternate storage allocation algorithms that wecan incorporate into

OpenDHT.

2.4.6 Load Balancing

To close this section, we discuss one additional area of work in the DHT space. It is

well known that when the identifiers of nodes in a DHT are chosen uniformlyat random, the load

imbalance between nodes can beO(logN) [SMK+01]. In other words, some nodes in the DHT will

be responsible for a logarithmic factor more of the key space than others. Even if clients balance

their key choices around the ring, then, some nodes in the DHT will see much higher storage and

routing load than others. In the case where clients of the DHT do not balance their key choices, the

problem is only exacerbated.

Load balancingin a DHT is the process of trying to modify the DHT so that each node

is assigned either an equal share of the key space, the data stored, or the routing load. There are a

number of algorithms in this space, and they rely on a variety of techniques. Ruhl and Karger’s al-

gorithm balances load by changing nodes’ identifiers to more equally sharethe key space or storage

load [RK04]. PAST and the algorithm of Suri et al. [STZ04] balance loadby moving large objects

to underutilized nodes. Godfrey et al. [GLS+04] balance load by assigning severalvirtual nodesto

each physical node in the DHT, as first proposed in Chord [SMK+01].

Since the amount of data stored by a node influences the bandwidth it uses on data main-

tenance, and since bandwidth is the limiting factor in the growth many DHTs, storage is often the

most important resource to balance. Unfortunately, load balancing itself requires bandwidth (as data

28

is moved), and so it cannot fully eliminate the problem. As we discuss in Chapter5, we are thus in

favor of encouraging application behavior that balances the storage used at the time it is allocated.

Our FST algorithm, for example, rewards clients that can choose keys so as to place their values on

underutilized nodes. Clients thus have a selfish incentive to target lightly loaded nodes, potentially

ameliorating the need for later load balancing by the DHT itself.

2.5 Summary

In this chapter we have presented an introduction to the field of DHT research, discussed

which portions of that field are covered in this thesis, and distinguished ourwork from the related

work of others. In subsequent chapters we will cover each of our contributions in detail. To review,

these include DHT lookup and storage in Chapters 3 and 4, the DHT as a service in Chapter 5, and

several practical issues we have discovered in building and deploying aDHT in Chapters 6 and 7.

29

Chapter 3

Lookup

As discussed in the introduction, the most basic functionality of a DHT islookup—

the mapping of keys onto nodes in the DHT. This functionality is the lowest-levelinterface in

the proposed Common API for DHTs [DZD+03], and it is the basic functionality on which the

put/get [DKK+01,Cat03,RGK+05], multicast [ZZJ+01,RKCD01,RHKS01], and DOLR [ZHS+04]

interfaces are built. It is thus of utmost importance that the lookup functionalitybe robust in all of

the scenarios in which DHTs are to be deployed.

Early work on DHTs focused on large-scale failures. For example, several papers have

shown that a DHT with a logarithmic number of neighbors per node can survive even when every

node in the system fails with probability 1/2 [SMK+01,KK03].

At the same time, research into existing (but not necessarily DHT-based) peer-to-peer

systems has shown that these networks are plagued not by large-scale simultaneous failures, but

instead suffer from a steady and continuous process of nodes joining and leaving the system, a

process we call churn. One measurement of churn, the median time betweenwhen a node joins the

network and when it next departs, has been observed to be as long as an hour to as short as a few

minutes in deployed systems [BSV03,CLL02,GDS+03,SGG02].

In this chapter we explore the performance of DHT lookup in such dynamic environ-

ments. DHTs may be better able to locate rare files than existing unstructured peer-to-peer net-

works [LHSH04]. Moreover, it is not hard to imagine that other proposed uses for DHTs will

show similar churn rates to file-sharing networks—application-level multicastof a low-budget ra-

dio stream, for example. In spite of this promise, we show that high churn causes a variety of

negative effects on two mature DHT implementations we tested. Both systems exhibit dramatic la-

tency growth when subjected to increasing churn, and in one implementation thenetwork eventually

30

partitions, causing subsequent lookups to return inconsistent results. The remainder of this chapter

is dedicated to determining whether a DHT can be built such that it continues to perform well as

churn rates increase.

In fact, we demonstrate that DHTs can perform lookups at high churn rates, and we iden-

tify and explore several factors that affect the behavior of DHTs under churn. The three most

important factors we identify are:

• reactive versus periodic recovery from failures

• calculation of message timeouts during lookups

• choice of nearby over distant neighbors

By reactive recovery, we mean the strategy whereby a DHT node tries to find a replacement neigh-

bor immediately upon noticing that an existing one has failed. We show that under bandwidth-

limited conditions, reactive recovery can lead to a positive feedback cyclethat overloads the net-

work, causing lookups to have high latency or to return inconsistent results. In contrast, a DHT

node may recover from neighbor failure at a fixed, periodic rate. We show that this strategy im-

proves performance under churn by allowing the system to avoid positivefeedback cycles.

The manner in which a DHT chooses timeout values during lookups can also greatly

affect its performance under churn. If a node performing a lookup sends a message to a node

that has left the network, it must eventually timeout the request and try another neighbor. We

demonstrate that such timeouts are a significant component of lookup latencyunder churn, and we

explore several methods of computing good timeout values, including virtualcoordinate schemes

as used in DHash [DLS+04].

Finally, we considerproximity neighbor selection(PNS), where a DHT node with a choice

of neighbors tries to select those that are nearest to itself in network latency. We compare several

algorithms for discovering nearby neighbors—including algorithms similar to those used in the

Chord, Pastry, and Tapestry DHTs—to show the tradeoffs they offer between latency reduction and

added bandwidth.

In performing this study, we build the Bamboo DHT [RGRK03], which was initially

based on Pastry, as described in Chapter 2. Furthermore, we augmentedBamboo such that it can be

configured to use any of the design choices described above. As such, we can examine each design

decision independently of the others. Moreover, we examine the performance of each configuration

31

by running it on a large cluster with an emulated wide-area network. This methodology is partic-

ularly important with regard to the choice of reactive versus periodic recovery as described above.

Existing studies of churn in DHTs (e.g., [CCR03a, CJK+03, LSG+04, MCR03]) have used simu-

lations that—unlike our emulated network—did not model the effects of networkqueuing, cross

traffic, or message loss. In our experience, these effects are primaryfactors contributing to DHTs’

inability to perform lookups quickly and correctly under churn. Moreover, our measurements are

conducted on an isolated network, where the only sources of queuing, cross traffic, and loss are

the DHTs themselves; in the presence of heavy background traffic, we expect that such network

realities will exacerbate the ability of DHTs to handle even lower levels of churn.

Of course, this study has limitations. Building and testing a complete DHT implementa-

tion on an emulated network is a major effort. Consequently, we have limited ourselves to studying

a single DHT on a single network topology using a relatively simple churn model.Furthermore, we

have not yet studied the effects of some implementation decisions that might affect the performance

of lookups under churn, including the use of alternate routing table neighbors as in Kademlia and

Tapestry, or the use of iterative versus recursive routing.1 Nevertheless, the Bamboo DHT described

here has since been used as the base system for OpenDHT (describedin later chapters), which has

been running successfully on PlanetLab for over a year now.

The rest of this chapter is structured as follows: in Section 3.1, we review existing studies

of churn in deployed file-sharing networks, describe the way we model such churn in our emulated

network, and quantify the performance of mature DHT implementations under such churn. In Sec-

tion 3.3, we study each of the factors listed above in isolation, and describe how Bamboo uses these

techniques. In Section 3.4, we survey related work, and in Section 3.5 we discuss important future

work. We conclude in Section 3.6.

3.1 The Problem of Churn

There have been very few large-scale, DHT-based application deployments to date, and

so it is hard to derive good requirements on churn-resilience. However, P2P file-sharing networks

provide a useful starting point. These systems provide a simple indexing service for locating files on

those peer nodes currently connected to the network, a function that canbe naturally mapped onto

a DHT-based mechanism. For example, the Overnet file-sharing system uses the Kademlia DHT to

1We have studied the differences between iterative and recursive routing in our PlanetLab deployment (see Chapter 7),
but not under the heavy churn rates used in this chapter.

32

Lifetime

Join Leave Join Leave

Session
Time time

Figure 3.1:Metrics of churn. With respect to lookup, thesession timesof DHT nodes are more
relevant than theirlifetimes.

store such an index. While some DHT applications (such as file storage as in CFS [DKK+01]) might

require greater client availability, others may show similar churn rates to file-sharing networks (such

as end-system multicast or a rendezvous service for instant messaging). As such, we believe that

DHTs should at least handle the churn rates observed in today’s file-sharing networks. To that end,

in this section we survey existing studies of churn in deployed file-sharing networks, describe the

way we model such churn in our emulated network, and quantify the performance of mature DHT

implementations under such churn.

Studies of existing file-sharing systems mainly use two metrics of churn (see Figure 3.1).

A node’ssession timeis the elapsed time between when it joins the network and when it subse-

quently leaves. In contrast, a node’slifetime is the time between when it enters the network for the

first time and when it leaves the network permanently. The sum of a node’s session times divided

by its lifetime is often called itsavailability. One representative study [BSV03] observed median

session times on the order of tens of minutes, median lifetimes on the order of days, and median

availability of around 30%.

With respect to the lookup functionality of a DHT, we argue that session time is the

most important metric. Even temporary loss of a routing neighbor weakens thecorrectness and

performance guarantees of a DHT, and unavailable neighbors reducea node’s effective connectivity,

forcing it to choose suboptimal routes and increasing the destructive potential of future failures.

Since nodes are often unavailable for long periods, remembering neighbors that have failed is of

little value in performing lookups.2

33

First Author Systems Observed Session Time
Saroiu [SGG02] Gnutella, Napster 50%≤ 60 min.
Chu [CLL02] Gnutella, Napster 31%≤ 10 min.
Sen [SW02] FastTrack 50%≤ 1 min.
Bhagwan [BSV03] Overnet 50%≤ 60 min.
Gummadi [GDS+03] Kazaa 50%≤ 2.4 min.

Table 3.1:Observed session times in various peer-to-peer systems.The median session time ranges
from an hour to a minute.

3.1.1 Empirical studies

Here we briefly survey five studies of existing peer-to-peer systems. The studies’ findings

are summarized in Table 3.1.

Saroiu, Gummadi, and Gribble [SGG02] presented the earliest study we have found of

session times in peer-to-peer systems. Using active probing, they found the median session time in

both Napster and Gnutella to be around 60 minutes. Another active study of Napster and Gnutella

by Chu, Labonte, and Levine [CLL02] found that 31% of observed sessions were shorter than 10

minutes, and less than 5% were longer than 60 minutes. On the other hand, theyobserved a small

fraction of sessions (less than 0.01%) lasting thousands of minutes at a time.

Sen and Wang [SW02] used passive monitoring to observe FastTrack traffic using routers

in an ISP backbone. To compute session length, they included all traffic less than 30 minutes apart

from the same IP address, and found that 60% of nodes had a total session time of under 10 minutes

daily.

Bhagwan, Savage, and Voelker [BSV03] performed an active study of the Overnet system.

The choice is significant since nodes in Overnet are uniquely identified bynames that persist across

sessions. As such, these names are more suitable for many metrics than IP addresses which vary over

time due to DHCP, firewalls, etc. While this distinction is important for measuring node lifetimes,

changing IP address involves leaving and rejoining a network, so we believe the previous studies’

session time results are still valid.

Since the Overnet study did not include session times, we re-analyzed theirdata to extract

them. This data contains the results of active probes for 2,400 distinct Overnet hosts every 20

minutes over a week. Marking the start of a session as the transition from a host being unreachable

to being reachable, or as the change from one IP address to another, we found a median session time

2While remembering neighbors is useful for applications like storage [BR03], our point here is that it is of little value
for lookupoperations.

34

of 60 minutes, plus or minus the 20 minute probe period.

A study of Kazaa by Gummadi et al. [GDS+03] used passive measurement techniques

to estimate session times as the length of continuous periods during which a nodewas actively

retrieving files. They found a median session length of only 2.4 minutes, and a90th percentile

session length of 28.25 minutes.

Looking at the summary of observed session times in Table 3.1, we conclude that to

replace existing systems, a DHT must be robust to session times from as long as an hour to as short

as a minute on median. At first sight, the lower end of this range seems surprising, and may be

due to methodological problems with the studies in question or malfunctioning of thesystem under

observation. However, it is easy to image a user joining the network, downloading a single file (or

failing to find it), and leaving, making session times of a few minutes at least plausible.

We further note that neither the studies we have cited nor our analysis take into account the

possibility that sessions are cut short due to network failures, or that a robust DHT would experience

longer session times due to its own resilience. Nevertheless, we feel that our derived requirements

are a useful starting point for DHT designers.

3.1.2 Experimental Methodology

Our platform for measuring DHT performance under churn is a cluster of40 IBM xSeries

PCs, each with Dual 1GHz Pentium III processors and 1.5GB RAM, connected by Gigabit Ethernet,

and running either Debian GNU/Linux or FreeBSD. We use ModelNet [VYW+02] to impose wide-

area delay and bandwidth restrictions, and the Inet topology generator [ine] to create a 10,000-

node wide-area AS-level network with 500 client nodes connected to 250distinct stubs by 1 Mbps

links. To increase the scale of the experiments without overburdening the capacity of ModelNet

(by running more client nodes), each client node runs two DHT instances, for a total of 1,000 DHT

nodes.

Our control software uses a set of wrappers that communicate locally with each DHT

instance to send requests and record responses. Running 1,000 DHT instances on this cluster (12.5

nodes/CPU) produces CPU loads below one, except during the highestchurn rates. Ideally, we

would measure larger networks, but 1,000-node systems already demonstrate problems that will

surely affect larger ones.

In an experiment, we first bring up a network of 1,000 nodes, one every1.5 seconds, each

with a randomly assigned gateway node to distribute the load of bootstrapping newcomers. We then

35

churn nodes until the system performance levels out; this phase normally lasts 20-30 minutes but

can take an hour or more. Node deaths are timed by a Poisson process andare therefore uncorrelated

and bursty. A new node is started each time one is killed, maintaining the total network size at 1,000.

This model of churn is similar to that described by Liben-Nowell et al. [LNBK02]. In a Poisson

process, an event rateλ corresponds to a median inter-event period of ln2/λ. For each event we

select a node to die uniformly at random, so each node’s session time is expected to spanN events,

whereN is the network size. Therefore a churn rate ofλ corresponds to a median node session time

of

tmed= N ln2/λ.

For example, a 1,000-node network churning with median session times of onehour will see one

node arrive (and one leave) every 5.2 seconds. In our experiments,we used churn rates ranging

from 8 joins/departures per second to 4 per minute, equal to median sessiontimes from 1.4 minutes

to 3 hours.

During an experiment, each live node continually performs lookups for identifiers chosen

uniformly at random, timed by a Poisson process with rate 0.1/second, for anaggregate system load

of 100 lookups/second. Each lookup is simultaneously performed by ten nodes, and we report both

whether it completes and whether it is consistent with the others for the same key. If there is a

majority among the ten results for a given key, all nodes in the majority are said tosee a consistent

result, and all others are considered inconsistent. If there is no majority, allnodes are said to see

inconsistent results. This metric of consistency is more strict than that required by some DHT

applications. However, both MIT’s Chord implementation and our Bamboo implementation show

at least 99.9% consistency under 47-minute median session times [RGRK03],so it does not seem

unreasonable.

There are two ways in which lookups fail in our tests. First, we do not perform end-to-

end retries, so a lookup may fail to complete if a node in the middle of the lookup path leaves the

network before forwarding the lookup request to the next node. We observed this behavior primarily

in FreePastry as described below. Second, a lookup may return inconsistent results. Such failures

occur either because a node is not aware of the correct node to forward the lookup to, or because it

erroneously believes the correct node has left the network (becauseof congestion or poorly chosen

timeouts). All DHT implementations we have tested show some inconsistencies under churn, but

carefully chosen timeouts and judicious bandwidth usage can minimize them.

36

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

P
er

ce
nt

 o
f L

oo
ku

ps

Time (minutes)

6.2 h

3.1 h

1.6 h

47 min

23 minConsistent
Completed

Figure 3.2:FreePastry under churn.The percentage of successful lookups in a 1,000-node Free-
Pastry network under churn. Session times for each 30-minute churn period are indicated by arrows,
and each churn period is separated from the next by 10 minutes of no churn. The churn rate doubles
with each successive period.

3.1.3 Existing DHTs

In this section we report the results of testing two mature DHT implementations under

churn. Our intent here is not to place a definitive bound on the performance of either implementa-

tion. Rather, it is to motivate our work by demonstrating that handling churn in DHTs is a non-trivial

problem. While we have discussed these experiments extensively with the authors of both systems,

it is still possible that alternative configurations could have improved their performance. Moreover,

both systems have seen subsequent development, and newer versions may show improved resilience

under churn.

FreePastry We tested FreePastry 1.3, the Rice University implementation of Pastry [fre].Fig-

ure 3.2 shows one effect of churn on a network of 1,000 FreePastry nodes, which we ran using the

default 24-node leaf sets and logarithm base of 16. We do not enforceproximity between a new

node and its gateway, as suggested for best FreePastry performance; this decision only effects the

proximity of a node’s neighbors, not the efficiency of its routing.

It is clear from Figure 3.2 that while successful lookups are mostly consistent, FreePastry

fails to complete a majority of lookup requests under heavy churn. A likely explanation for this fail-

ure is that nodes wait so long on lookup requests to time out that they frequently leave the network

with several requests still in their queues. This behavior is probably exacerbated by FreePastry’s

37

 0

 1

 2

 3

 4

 5

 8 16 32 64 128
M

ea
n

La
te

nc
y

(s
)

Median Session Time (min)

Chord
Bamboo (No PNS)

Bamboo (PNS)

Figure 3.3:Chord under churn.Shown is the mean latency of lookups in a 1,000-node MIT Chord
network under increasing levels of churn. Churn increases to the left.

use of Java RMI over TCP as its message transport and the way that FreePastry nodes handle the

loss of their neighbors. We present evidence to support these ideas in Section 3.3.1.

Also note that FreePastry generally recovers well between churn periods, once again cor-

rectly completing all lookups. The difficulty with real systems is that there is no such quiet period;

the network is in a continual state of churn.

MIT Chord We tested MIT’s Chord implementation [mit] using a CVS snapshot from 8/4/2003,

with the default 10-node successor lists and with the location cache disabled(using the-F option),

since the cache causes poor performance under churn.

In contrast to FreePastry, almost all lookups in a Chord network complete and return

consistent results. Instead, Chord’s shortcoming under churn is in lookup latency, as shown in Fig-

ure 3.3, which shows the result of running Chord under the same workload as shown in Figure 3.2,

but where we have averaged the lookup latency over each churn period. Shown for comparison are

two lines representing Bamboo’s performance in the same test, with and without proximity neighbor

selection (PNS). Under all churn rates, Bamboo’s bandwidth usage is slightly under 750 bytes per

second per node, while Chord’s is slightly under 2,400.

We discuss in detail the differences that enable Bamboo to outperform Chord in Sec-

tions 3.3.2 and 3.3.3, but some of the difference in latency between Bamboo and Chord is due to

their routing styles. Bamboo performs lookups recursively, whereas Chord routes iteratively. Chord

could easily be changed to route recursively; in fact, newer versions of Chord support both recur-

sive routing and PNS. Note, however, that Chord’s latency grows morequickly under increasing

38

churn than does Bamboo’s. In Section 3.3.2, we will show evidence to support our belief that this

growth is due to Chord’s method of choosing timeouts for lookup messages and is independent of

the lookup style employed.

Summary

To summarize this section, we note that we have observed several effectsof churn on

existing DHT implementations. A DHT may fail to complete lookup requests altogether, or it may

complete them but return inconsistent results for the same lookup launched from different source

nodes. On the other hand, a DHT may continue to return consistent results as churn rates increase,

but it may suffer from a dramatic increase in lookup latency in the process.

3.2 The Bamboo DHT

The remainder of this chapter focuses only on the Bamboo DHT, in which we have im-

plemented each alternative design choice studied here. Working entirely within a single implemen-

tation allows us to minimize the differences between experiments comparing one design choice to

another. We thus complete the the brief description of how Bamboo works from Section 2.1 before

continuing.

We built Bamboo after gaining extensive experience implementing Tapestry [ZHS+04],

a more sophisticated but also more complicated DHT design. As a result of this experience, our

goal in building Bamboo was to produce an extremely simple DHT design on whichmore advanced

functionality could be layered, but which did not depend on such advanced functionality for correct

operation. While we built Bamboo on the Pastry geometry, we thus implemented onlythose features

of Pastry that were absolutely necessary to make the system function.

Joining the Network To join an existing Bamboo network, a new nodeA asks an existing nodeG

to route a join message to the existing node that is the root forA’s identifier. As in Pastry, the nodes

that this message traverses in route to the root are recording in the message, and the root responds

to the message with all the nodes in this path, its own identifier and network address, plus those of

its leaf set. The root also sends an application-level ping toA, and ifA responds, the root addsA to

its own leaf set.

In contrast to Pastry, which uses the root’s response to perform a sophisticated join al-

gorithm designed to maximize the proximity of a node’s neighbors, in Bamboo node A does very

39

C

EA

B D

Figure 3.4:The need for pushing and pulling leaf sets.Arrows represent neighbor links. Unless leaf
sets are also pulled,C’s leaf set is never corrected.

little with the result. It simply sends an application-level ping to each node in the response, and if

they respond to this ping, it adds them to its leaf set and routing table as appropriate (if they are its

immediate predecessors or successors, or if they have the correct prefixes).

Maintaining the Leaf Set To maintain its leaf set over time, a Bamboo node pushes a list of the

nodes in its own leaf set to some member of that set, and pulls a list of that neighbor’s leaf set in

response. In this way, the node learns of new nodes in its vicinity of the ring. This process can be

performed periodically or in response to failures, as we describe below.

It is important, however, that a node perform both the push and pull phases. An example is

shown in Figure 3.4; indeed, it was observing this kind of state that led us to implement pulls. Five

nodes are shown in a system with` = 1; the arrows represent each node’s successor and predecessor

according to its leaf set. NodeC is unavailable during which timeB andD join. C subsequently

becomes available again, but nodesB andD have no knowledge of it, whereasC still thinks its

neighbors areA andE. If leaf sets are only pushed, no node in this system will tellC about the

existence ofB or D, and its leaf set will remain incorrect. With pulls, however, the first timeC

contactsA it will learn aboutB; the same is true forE andD.

In the published descriptions of Pastry, nodes only push leaf sets; theredoes not appear to

be a corresponding pull [MCR03]. We are not sure why this is the case.

Maintaining the Routing Table To find a neighbor with prefixp for its routing table, a Bamboo

node picks an identifieri = p · s, wheres is a random suffix, and does a lookup oni. It then sends

an application-level ping to the resulting node, and if the node responds, itis added to the routing

table. As with leaf set maintenance, this process can be performed periodically or in response to

failures.

To find proximal neighbors, a Bamboo node can be configured to repeatthis process

continually, even for routing table entries for which it already has neighbors. In this latter case,

it replaces the existing neighbor if the round-trip time to a newly discovered one is at least 10%

40

public static interface SendCallBack{
void sendcallback (booleansuccess);
}

public void send (Object msg, InetSocketAddress dst,int tries, SendCallBack cb);

public double est rtt ms (InetSocketAddress peer);

Figure 3.5:The Bamboo communications layer interface.The layer makes up totries attempts to
sendmsgto dst, calling sendcallbackafter an ACK or too many retries. It also exposes the mean
observed round-trip time to each peer.

shorter than that to the existing one. Although this process is much less sophisticated than that used

by other DHTs to find nearby neighbors, we show in Section 3.3.3 that it is quite effective.

The Messaging Layer Bamboo nodes communicate using UDP. While we originally chose UDP

to limit the number of file descriptors used by Bamboo while running multiple virtual nodes on the

same machine, we have since come to believe that the semantics of TCP are inappropriate for a

DHT. What is needed instead is message-based, unreliable, unordered, but congestion-controlled

communication. The manner in which these semantics are provided is briefly described below,

but we emphasize here that the specifics should be viewed only as an artifact of the system. In

fact, the semantics we desire are quite close to those provided by DCCP [KHFP03] using TCP-like

congestion control, and it is likely that we would have used DCCP were it available, although we

admit we have not fully explored this possibility.

In the style of TCP, the Bamboo communications layer uses the time between when it

sends message and the receipt of the corresponding ACK to maintain an exponentially weighted

average round trip time (RTT) and variance thereof for each peer. These values are made available

to higher layers of the system. It computes round-trip timeouts (RTOs) to decide when to retransmit

a packet, and it backs the RTO off exponentially with each timeout. It maintains acongestion

window in a similar manner to the TCP slow-start algorithm, and it notifies the application when a

packet is acknowledged. Unlike TCP, our messaging layer does not implement fast retransmit. The

interface that the communications layer exports is shown in Figure 3.5.

41

3.3 Handling Churn

Having given evidence indicating that DHTs’ ability to perform lookups is hindered under

churn, and having described the details of our Bamboo implementation, we nowturn to the heart of

this chapter: a study of the factors contributing to DHTs’ difficulty with churn, and a comparison of

solutions that can be used to overcome them. In turn, we discuss reactive versus periodic recovery

from neighbor failure, the calculation of good timeout values for lookup messages, and techniques

to achieve proximity in neighbor selection.

3.3.1 Reactive vs. Periodic Recovery

Early implementations of Bamboo suffered performance degradation underchurn similar

to that of FreePastry. MIT Chord’s performance, however, does not degrade in the same way. A

significant difference in its behavior is a design choice about how to handle detected node failures.

We will call the two alternative approaches reactive and periodic recovery.

Reactive recovery In reactive recovery, a node reacts to the loss of one if its existing leaf set

neighbors (or the appearance of a new node that should be added to its leaf set) by sending a

copy of its new leaf set to every node in it. To save bandwidth, a node can only send differences

from the last message, but the total number of messages is stillO(k2) for a leaf set ofk nodes.

This algorithm converges quickly, is used in FreePastry, and was the onlymode supported in early

versions of Bamboo. MSPastry uses a more bandwidth-efficient, but morecomplex, variant of

reactive recovery [CCR03a].

Periodic recovery In contrast, in periodic recovery a node periodically shares its leaf set with

each of the members of that set, each of whom responds in kind with its own leaf set. This process

takes place independently of the node detecting changes in its leaf set. As a simple optimization, a

node picks one random member of its leaf set with which to share state in each period. This change

saves bandwidth, but still converges inO(logk) phases, wherek is the size of the leaf set. (Further

details can be found elsewhere [RGRK03].) This algorithm is the one currently used by Bamboo,

and the periodic nature of this algorithm is shared by Chord’s method of keeping its successor list

correct.

42

Positive feedback cycles

Reactive recovery runs the risk of creating a positive feedback cycleas follows. Consider

a node whose access link to the network is sufficiently congested such thatseveral consecutive

timeouts cause it to believe that one of its neighbors has failed. If the node is recovering reactively,

recovery operations begin, and the node will add even more packets to its already congested network

link. This added congestion will increase the likelihood that the node will mistakenly conclude that

other neighbors have failed. If this process continues, the node will eventually cause congestion

collapse on its access link.

Observations of these cycles in the early Bamboo code (and examination of the Chord

code) originally led us to propose periodic recovery for handling churn. By decoupling the rate of

recovery from the discovery of failures, periodic recovery prevents the feedback cycle described

above. Moreover, by lengthening the recovery period with the observation of message timeouts, we

can introduce a negative feedback cycle, further improving resilience.

Another way to mitigate the instability associated with reactive recovery is to be more

conservative when detecting node failure. We have found one effective approach to be to conclude

failure only after 15 consecutive message timeouts to a neighbor. Since timeouts are backed off

multiplicatively to a maximum of five seconds, it is unlikely that a node will concludefailure due to

congestion. One drawback with this technique, however, is that neighbors that have actually failed

remain in a node’s routing table for some time. Lookups that would route through these neighbors

are thus delayed, resulting in long lookup latencies. To remedy this problem, anode stops routing

through a neighbor after seeing five consecutive message timeouts to that neighbor. We have found

these changes make reactive recovery feasible for small leaf sets and moderate churn.

Scalability

Experiments show little difference in correctness between periodic and reactive recovery

at low churn rates. (At high churn rates, reactive recovery is far worse.) To see why, consider a

nodeA that joins a network, and letB be the node in the existing network whose identifier most

closely matches that ofA. As in Pastry,A retrieves its initial leaf set by contactingB, andB addsA

to its leaf set immediately after confirming its IP address and port (with a probe message). UntilA’s

arrival propagates through the network, another nodeC may still route messages that should go to

A to B instead, butB will just forward these messages on toA. Likewise, shouldA fail, B will still

be inC’s leaf set, so once routing messages toA time out,C and other nearby nodes will generally

43

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 10 20 30 40 50

B
an

dw
id

th
 (

kB
/s

/n
od

e)

Time (minutes)

47 min 23 min

Reactive
Periodic

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50

95
th

 P
er

ce
nt

ile
 L

at
en

cy
 (

s)

Time (minutes)

47 min 23 min

Reactive
Periodic

Figure 3.6:Reactive versus periodic recovery.Without churn, reactive recovery is very efficient, as
messages are only sent in response to actual changes. At reasonablechurn rates, however, periodic
recovery uses less bandwidth, and lower contention for the network leads to lower latencies.

all agree thatB is the next best choice.

While both periodic and reactive recovery achieve roughly identical correctness, there is

a large difference in the bandwidth consumed under different churn rates and leaf set sizes. (A

commonly accepted rule of thumb is that to provide sufficient resilience to massive node failure,

the size of a node’s leaf set should be logarithmic in the system size.) Under low churn, reactive

recovery is very efficient, as messages are only sent in response to actual changes, whereas periodic

recovery is wasteful. As churn increases, however, reactive recovery becomes more expensive, and

this behavior is exacerbated by increasing leaf set size. Not only does anode see more failures when

its leaf set is larger, but the set of other nodes it must notify about the resulting changes in its own

leaf set is larger. In contrast, periodic recovery aggregates all changes in each period into a single

message.

Figure 3.6 shows this contrast in Bamboo using leaf sets of 24 nodes, the default leaf set

size in FreePastry. In this figure, we ran Bamboo using both configurations for two 20-minute peri-

ods using 47 and 23 minute median session times, respectively. These two periods were separated

by five minutes with no churn.

We note that during the periods of the test where there is no churn, reactive recovery uses

less than half of the bandwidth of periodic recovery. On the other hand, under churn its bandwidth

use jumps dramatically. As discussed above, Bamboo does not suffer from positive feedback cycles

on account of this increased bandwidth usage. Nevertheless, the extramessages sent by reactive

recovery compete with lookup messages for the available bandwidth, and aschurn increases we see

a corresponding increase in lookup latency. Although not shown in the figure, the number of hops

44

per lookup is virtually identical between the two schemes, implying that the growthin bandwidth is

most likely due to contention for the available bandwidth.

Since our goal is to handle median session times down to a few minutes with low lookup

latency, we do not explore reactive recovery further in this work. Theremainder of the Bamboo

results we present are all obtained using periodic recovery.

3.3.2 Timeout Calculation

In this section, we discuss the role that lookup message timeouts play in handlingchurn.

To understand the relative importance of timeouts in a DHT as opposed to a moretra-

ditional networked system, consider a traditional client-server system such as the networked file

system (NFS). In NFS, the server does not often fail, and when it doesthere are generally few op-

tions for recovery and no alternative servers to fail over to. If a response to an NFS request is not

received in the expected time, the client can only try again with an exponentiallyincreasing timeout

value.

In a peer-to-peer system under churn, in contrast, requests will be frequently sent to a

node that has left the system, possibly forever. At the same time, a DHT has many alternate paths

available to complete a lookup. Simply backing off the request period is thus a poor response to a

request timeout; it is often better to retry the request through a different neighbor.

A node should ensure that the timeout for a request was judiciously selected before routing

to an alternate neighbor. If it is too short, the node to which the original was sent may be yet to

receive it, may be still processing it, or the response may be queued in the network. If so, injecting

additional requests may result in the use of additional bandwidth without any beneficial result—for

example, in the case that the local node’s access link is congested. Conversely, if the timeout is

too long, the requesting node may waste time waiting for a response from a node that has left the

network. If the request rate is high, these long waits may cause unbounded queue growth on the

requesting node that might be avoided with shorter timeouts.

For these reasons, nodes should accurately choose timeouts such that alate response is

indicative of node failure, rather than network congestion or processor load.

Techniques

We discuss and study three alternative timeout calculation strategies. In the first, we fix

all timeouts at a conservative value of five seconds as a control. In the second, we calculate TCP-

45

style timeouts using direct measurement of past response times. Finally, we explore using indirect

measurements from a virtual coordinate algorithm to calculate timeouts.

TCP-style timeouts: If a DHT routes recursively, it rarely communicates with nodes other than

its direct neighbors in the overlay network. Since the number of these neighbors is logarithmic in the

size of the network, and since each node periodically probes each neighbor for availability, a node

can easily maintain a past history of each neighbor’s response times for use in calculating timeouts.

In Bamboo, we have implemented this strategy following the style of the early TCP work [JK88],

where each node maintains an exponentially weighted mean and variance of the response time for

each neighbor. Specifically, the estimate round-trip timeout (RTO) for a neighbor is calculated as

RTO= AVG +4×VAR,

where AVG is the observed average round-trip time and VAR is the observed mean variance of that

time.

Timeouts from virtual coordinates: In contrast to recursive routing, with iterative routing a node

must potentially have a good timeout foranyother node in the network. However, in some scenarios

iterative routing does have attractive properties. For example, since the source of a lookup request

controls the entire process of iterative routing, it is easy to explore several different lookup paths in

parallel. For only a constant increase in bandwidth used, this technique prevents a single timeout

from delaying a lookup [LSG+04].

Virtual coordinatesprovide one approach to computing timeouts without previously mea-

suring the response time to every node in the system. In this scheme, a distributed machine learning

algorithm is employed to assign to each node coordinates in a virtual metric space such that the

distance between two nodes in the space is proportional to their latency in the underlying network.

Bamboo includes an implementation of the Vivaldi coordinate system employed byChord

[CDK+03b]. Vivaldi keeps an exponentially-weighted average of the error of past round-trip times

calculated with the coordinates, and computes the RTO as

RTO= v+6×α+15

wherev is the predicted round-trip time andα is the average error. The constant term of 15 mil-

liseconds is added to avoid unnecessary retransmissions when the destination is the local host.

46

 0

 0.5

 1

 1.5

 2

 2 4 8 16 32 64 128 256
M

ea
n

La
te

nc
y

(s
)

Median Session Time (min)

Fixed 5s
Vivaldi

TCP-style

Figure 3.7:TCP-style versus virtual coordinate-based timeouts in Bamboo.Timeouts chosen using
Vivaldi are competitive with TCP-style timeouts for moderate churn rates.

Results

TCP-style timeouts assume a recursive routing algorithm, and a virtual coordinate system

is necessary only when routing iteratively. While we would ideally compare thetwo approaches

by measuring each in its intended environment, this would prevent us from isolating the effect of

timeouts from the differences caused by routing styles.

Instead, we study both schemes under recursive routing. If timeouts calculated with vir-

tual coordinates provide performance comparable to those calculated in theTCP-style under recur-

sive routing, we can expect the virtual coordinate scheme to not be prohibitively expensive under

iterative routing. While other issues may remain with iterative routing under churn (e.g. congestion

control—see Section 3.5), this result would be a useful one.

Figure 3.7 shows a direct comparison of the three timeout calculation methods under

increasing levels of churn. In all cases in this experiment, the Bamboo configurations differed only

in choice of timeout calculation method. Proximity neighbor selection was used, but the latency

measurements for PNS used separate direct probing and not the virtual coordinates.

Even under light levels of churn, fixing all timeouts at five seconds causes lookup timeouts

to pull the mean latency up to more than twice that of the other configurations, confirming our

intuition about the importance of good timeout values in DHT routing under churn. Moreover, by

comparing Figure 3.7 to Figure 3.3, we note that under high churn timeout calculation has a greater

effect on lookup latency than the use of PNS.

Virtual coordinate-based timeouts achieve very similar mean latency to TCP-style time-

outs at low churn. Furthermore, they perform within a factor of two of TCP-style measurements

47

until the median churn rate drops to 23 minutes. Past this point, their performance quickly di-

verges, but virtual coordinates continue to provide mean lookup latenciesunder two seconds down

to twelve-minute median session times.

Finally, we note the similarity in shape of Figure 3.7 to Figure 3.3, where we compared

the performance of Chord to Bamboo, suggesting that the growth in lookup latency under Chord at

high churn rates is due to timeout calculation based on virtual coordinates.

3.3.3 Proximity Neighbor Selection

Perhaps one of the most studied aspects of DHT design has been proximity neighbor

selection (PNS), the process of choosing among the potential neighbors for any given routing table

entry according to their network latency to the choosing node. This research is well motivated. The

stretchof a lookup operation is defined as the latency of the lookup divided by the round-trip time

between the lookup source and the node discovered by the lookup in the underlying IP network.

Dabek et al. present an argument and experimental data that suggest that PNS allows a DHT ofN

nodes to achieve median stretch of only 1.5, independent of the size of the network and despite using

O(logN) hops [DLS+04]. Others have proved that PNS can be used to provide constant stretch in

locating replicas under a restricted network model [PRR97]. This is the first study of which we are

aware, however, to compare methods of achieving PNS under churn. Wefirst take a moment to

discuss the common philosophy and techniques shared by each of the algorithms we study.

Commonalities

One of the earliest insights in DHT design was the separation of correctness and per-

formance in the distinction between neighbors in the leaf set and neighbors inthe routing ta-

ble [RD01,SMK+01]. So long as the leaf sets in the system are correct, lookups will alwaysreturn

correct results, although they may takeO(N) hops to do so. Leaf set maintenance is thus given

priority over routing table maintenance by most DHTs. In the same manner, we note that so long

as each entry in the routing table hassomeappropriate neighbor (i.e., one with the correct identifier

prefix), lookups will always complete inO(logN) hops, even though they make take longer than if

the neighbors had been chosen for proximity. We say such lookups areefficient, even though they

may not have low stretch. By this argument, we reason that it is desirable to filla routing table entry

quickly, even with a less than optimal neighbor; finding a nearby neighbor isa lower priority.

There is a further argument to treating proximity as a lower priority in the presence of

48

churn. Since we expect our set of neighbors to change over time as part of the churn process, it

makes little sense to work too hard to find the absolute closest neighbor at anygiven time; we might

expend considerable bandwidth to find them only to see them leave the network shortly afterward.

As such, our general approach is to run each of the algorithms described belowperiodically. In the

case where churn is high, this technique allows us to retune the routing table as the network changes.

When churn is low, rerunning the algorithms makes up for latency measurement errors caused by

transient network conditions in previous runs.

Our general approach to finding nearby neighbors thus takes the following form. First,

we use one of the algorithms below to find nodes that may be near to the local node. Next, we

measure the latency to those nodes. If we have no existing neighbor in the routing table entry that

the measured node would fill, or if it is closer than the existing routing table entry, we replace that

entry, otherwise we leave the routing table unchanged. Although the bandwidth cost of multiple

measurements is high, the storage cost to remember past measurements is low. As a compromise,

we perform only a single latency measurement to each discovered node during any particular run of

an algorithm, but we keep an exponentially weighted average of past measurements for each node,

and we use this average value in deciding the relative closeness of nodes. This average occupies only

eight bytes of memory for each measured node, so we expect this approach to scale comfortably to

very large systems.

Techniques

The techniques for proximity neighbor selection that we study here are global sampling,

sampling of our neighbors’ neighbors, and sampling of the nodes that have our neighbors as their

neighbors. We describe each of these techniques in turn.

Global sampling In global sampling we use the lookup functionality of the DHT to find new

neighbors. For a routing table entry that requires a neighbor with prefixp, we perform a lookup

for a random identifier with prefixp. The node returned by this lookup will almost always have the

desired prefix. (As an example of why this is not always the case, note that a lookup of identifier 0

may return a node whose identifier starts with 1 if the node with the largest identifier in the ring is

numerically closer to 0 than the node with the smallest identifier.) Given enough samples, all nodes

with prefix p will eventually be probed. The motivation for this technique comes from Gummadi et

al., who showed that sampling only around 16 nodes for each routing table entry provides almost

49

D
A

B
C

Figure 3.8: Sampling neighbors’ neighbors.If A joins usingD as its gateway, its initial level-0
neighbors are the same as those ofD; assume that these are all within the dashed line.A contacts a
level-0 neighbor, e.g.C, and asks it for its level-0 neighbors.A would learn aboutB in this manner.
However, there may be no path from theD’s ideal neighbors to those ofA.

optimal proximity [GGG+03].

There are some cases, however, where global sampling will take unreasonably long to find

the closest possible neighbor. For example, consider two nodes separated from the core Internet by

the same, high latency access link, as shown in Figure 3.9. The relatively high latency seen by these

two nodes to all other nodes in the network makes them attractive neighbors for each other; if they

have different first digits in a network with logarithm base two, they can drastically reduce the cost

of the first hop of many routes by learning about each other. However,the time for these nodes to

find each other using global sampling is proportional to the size of the total network, and so they

may not find each other before their sessions end. It is this drawback ofglobal sampling that leads

us to consider other techniques.

Neighbors’ neighbors The next technique we consider is sampling our neighbors neighbors, a

process calledrouting table maintenancein the Pastry work [RD01]. In this technique, we contact

an existing routing table neighbor at levell of our routing table and ask for its levell neighbors. Like

us, these nodes share a prefix ofl −1 digits with the contacted neighbor and are thus appropriate

for use in our routing table as well. As in global sampling, having discoveredthese new nodes, we

probe them for latency and use them if they are closer than our existing neighbors.

The motivation for sampling neighbors’ neighbors is illustrated in Figure 3.8; itrelies on

the expectation that proximity in the network is roughly transitive. If a node discovers one nearby

node, then that node’s neighbors are probably also nearby. In this way, we expect that a node can

“walk” through the graph of neighbor links to the set of nodes most near it.

To see one possible shortcoming of sampling our neighbors’ neighbors, consider again

Figure 3.9. While the two isolated nodes would like to discover each other, it is unlikely that any

other nodes in the network would prefer them as neighbors; their isolation makes them unattractive

for routing lookups that originate elsewhere, except in the rare case that they are the result of those

50

100 ms

A

B

C

Figure 3.9:Sampling neighbors’ inverse neighbors.NodesA andB are isolated from the remainder
of the network by a long latency, and are initially unaware of each other. Such a situation is possible
if, for example, two European nodes join a network of primarily North American nodes. As such,
they make unattractive neighbors for other nodes, but they would still like tofind each other. If they
both haveC as a neighbor, they can find each other by askingC for its inverse neighbors.

lookups. As such, since neighbor links in DHTs are rarely symmetric, it is unlikely that there is a

path through the graph of neighbor links that will lead one isolated node to theother, despite their

relative proximity.

Neighbors’ inverse neighbors The latter argument presents an obvious alternative approach. In-

stead of sampling our neighbors’ neighbors, why not sample those nodesthat have the same neigh-

bors as the local node? This technique was originally proposed in the Tapestry nearest neighbor

algorithm [HKRZ02]; we call it sampling our neighbors’ inverse neighbors. To motivate this tech-

nique, consider again Figure 3.9. Although the two remote nodes are unlikelyto be neighbors of

many other nodes, given that their existing neighbors are mostly nearby, they are likely to choose

the same neighbors from outside their isolated domain. For this reason, they are likely to find each

other in the set of their neighbors’ inverse neighbors.

Normally, a DHT node would not record the set of nodes that use it as a neighbor. Ac-

tively managing such a list, in fact, requires additional probing bandwidth. Currently, the Bamboo

implementation does actively manage this set, but it could be easily approximated at each node by

keeping track of the set of nodes that have sent it liveness probes in the last minute or so. We plan

to implement this optimization in our future work.

Recursive sampling Consider Figure 3.9 one final time, and assume that we are using a single-bit

digits and that the two remote nodes begin with different digits, i.e. 0 and 1 respectively. The node

whose identifier starts with 0 will have only one neighbor whose identifier begins with 1 (its level-0

neighbor). Likewise, the node whose identifier starts with 1 will have only one neighbor that starts

with 0. The set of neighbors in whose inverse neighbor sets the two isolatedneighbors can find

each other is thus very small. As such, until the two isolated nodes have found very nearby level-0

51

(1) function nearestNeighbors () =
(2) S= highestNonempRtLevel ();
(3) l = longestMatchingPrefix (S);
(4) while l >= 0
(5) forall n in S
(6) T = n.getInverseRtNeighbors (l);
(7) S= closest (k, S∪T);

Figure 3.10:The Tapestry nearest neighbor algorithm.

neighbors, they will be unlikely to find each other among their neighbors’ inverse neighbors.

To remedy this final problem, we can perform the sampling of nodes in a manner similar

to that used by the Tapestry nearest neighbor algorithm and the Pastry optimized join algorithm.

Pseudo-code for this technique is shown in Figure 3.10. Starting with the highest levell in its

routing table, a node contacts the neighbors at that level and retrieves their neighbors or inverse

neighbors. The latency to each newly discovered node is measured, andall but thek closest are

discarded. The node then decrementsl and retrieves the level-l neighbors from each non-discarded

node. This process is repeated untill < 0. Along the way, each discovered neighbor is considered as

a candidate for use in the routing table. To keep the cost of this algorithm low,we limit it to having

at most three outstanding messages (neighbor requests or latency probes) at any time.

Note that although this process starts by sampling from the routing table, the set of nodes

on which it recurses is not constrained by the prefix-matching structure of that table. As such, it does

not suffer from the small rendezvous set problem discussed above.In fact, under certain network

assumptions, it has been proved that this process finds a node’s nearest neighbor in the underlying

network.

Results

In order to compare the techniques described above, it is important to consider not only

effective they are at finding nearby neighbors, but also at what bandwidth cost they do so. For

example, global sampling at a high enough rate relative to the churn rate would achieve perfect

proximity, but at the cost of a very large number of lookups and latency probes. To make this

comparison, then, we ran each algorithm (and some combinations of them) at various periods, then

plotted the mean lookup latency under churn versus bandwidth used. The results for median session

52

 250

 300

 350

 400

 450

 500

 600 800 1000 1200 1400

M
ea

n
La

te
nc

y
(m

s)

Bandwidth (bytes/s/node)

No PNS
NN

NIN
Global

NN Recursive
NIN Recursive

(a)

 240

 260

 280

 300

 320

 340

 600 800 1000 1200 1400

M
ea

n
La

te
nc

y
(m

s)

Bandwidth (bytes/s/node)

Global
Rand+NN

Rand+NIN
Rand+NN Recur

Rand+NIN Recur

(b)

Figure 3.11:Comparison of PNS techniques.“No PNS” is the control case, where proximity is
ignored. “Global Sampling” uses the lookup function to sample all nodes in theDHT. “NN” is
sampling our neighbor’s neighbors, and “NIN” is sampling their inverse neighbors. The recursive
versions of “NN” and “NIN” mimic the nearest-neighbor algorithms of Pastryand Tapestry, respec-
tively. Note that the scales are different between the two figures.

times of 47 minutes are shown in Figure 3.11, which is split into two graphs for clarity.

Figure 3.11(a) shows several interesting results. First, we note that onlya little bit of

global sampling is necessary to produce a drastic improvement in latency versus the configuration

that is not using PNS. With virtually no increase in bandwidth, global sampling drops the mean

latency from 450 ms to 340 ms.

Next, much to our surprise, we find that simple sampling of our neighbor’s neighbors or

inverse neighbors is not terribly effective. As we argued above, this result may be in part due to

the constraints of the routing table, but we did not expect the effect to be so dramatic. On the other

hand, the recursive versions of both algorithms are at least as effective as global sampling, but not

much more so. This result agrees with the contention of Gummadi et al. that onlya small amount

of global sampling is necessary to achieve near-optimal PNS.

Figure 3.11(b) shows several combinations of the various algorithms. Global sampling

plus sampling of neighbors’ neighbors does well, offering a small decrease in latency without much

additional bandwidth. However, the other combinations offer similar results.At this point, it seems

prudent to say that the most effective technique is to combine global samplingwith any other tech-

nique. While there may be other differences between the techniques not revealed by this analysis,

we see no clear reason to prefer one over another as yet.

53

3.4 Related Work

As we noted at the start of this chapter, while DHTs have been the subject of much re-

search in the last 4 years or so, there have been few studies of the churn resilience of real im-

plementations at scale, perhaps because of the difficulty of deploying, instrumenting, and creating

workloads for such deployments. However, there has been a substantial amount of theoretical and

simulation-based work.

Gummadi et al. [GGG+03] present a comprehensive analysis of the resilience of the var-

ious DHT geometries to failures.

Liben-Nowell et al. [LNBK02] present a theoretical analysis of structured peer-to-peer

overlays from the point of view of churn as a continuous process. They prove a lower bound on the

maintenance traffic needed to keep such networks consistent under churn, and show that Chord’s

algorithms are within a logarithmic factor of this bound. This chapter, in contrast, has focused more

on the systems issues that arise in handling churn in a DHT. For example, we have observed what

they call “false suspicions of failure”, the appearance that a functioningnode has failed, and shown

how reactive failure recovery can exacerbate such conditions.

Mahajan et al. [MCR03] present a simulation-based analysis of Pastry in which they study

the probability that a DHT node will forward a lookup message to a failed nodeas a function of the

rate of maintenance traffic. They also present an algorithm for automaticallytuning the maintenance

rate for a given failure rate. Since this algorithm increases the rate of maintenance traffic in response

to losses, we are concerned that it may cause positive feedback cycleslike those we have observed

in reactive recovery. Moreover, we believe their failure model is pessimistic, as they do not consider

hop-by-hop retransmissions of lookup messages. By acknowledging lookup messages on each hop,

a DHT can route around failed nodes in the middle of a lookup path, and in this work we have

shown that good timeout values can be computed to minimize the cost of such retransmissions.

Castro et al. [CCR03a] presented a number of optimizations they have performed in

MSPastry, the Microsoft Research implementation of Pastry, using simulations. Also, Li et al.

[LSM+05, LSG+04] performed a detailed simulation-based analysis of several differentDHTs un-

der churn, varying their parameters to explore the latency-bandwidth tradeoffs presented. It was

their work that inspired our analysis of different PNS techniques.

As opposed to the emulated network used in this study, simulations do not usuallycon-

sider such network issues as queuing, packet loss, etc. By not doing so, they either allow simulation

of far larger networks than we have studied here [CCR03a, MCR03], or they are able to explore a

54

far larger space of possible DHT configurations [LSM+05, LSG+04]. On the other hand, they do

not reveal subtle issues in DHT design, such as the tradeoffs between reactive and periodic recov-

ery. Also, they do not reveal the interactions of lookup traffic and maintenance traffic in competing

for network bandwidth. We are interested in whether a useful middle ground exists between these

approaches.

Finally, a number of useful features for handling churn have been proposed, but are not

implemented by Bamboo. For example, Kademlia [MM02] maintains several neighbors for each

routing table entry, ordered by the length of time they have been neighbors.Newer nodes replace

existing neighbors only after failure of the latter. This design decision is aimedat mitigating the

effects of the high “infant mortality” observed in peer-to-peer networks.

Another approach to handling churn is to introduce a hierarchy into the system, through

stable “superpeers” [gnu, ZDH+02]. While an explicit hierarchy is a viable strategy for handling

load in some cases, this work has shown that a fully decentralized, non-hierarchical DHT can in fact

handle high rates of churn at the routing layer.

3.5 Future Work

As discussed in the introduction, there are several other limitations of this study that we

think provide for important future work. At an algorithmic level, we would like tostudy the effects

of alternate routing table neighbors as in Kademlia and Tapestry. We would also like to continue

our study of iterative versus recursive routing. While we show in Chapter7 that iterative routing has

performance advantages in networks with a significant fraction of slow nodes, we have yet to study it

under heavy churn. Furthermore, congestion control for iterative lookups is a challenging problem.

The Chord DHT uses a congestion control algorithm [DLS+04] called STP for this purpose, but its

behavior under churn has not been tested either.

At a methodological level, we would like to broaden our study to include better models

of network topology and churn. We have so far used only a single network topology in our work,

and so our results should be not be taken as the last word on PNS. In particular, the distribution of

internode latencies in our ModelNet topology is more Gaussian than the distribution of latencies

measured on the Internet. Unfortunately for our purposes, these measured latency distributions do

not include topology information, and thus cannot be used to simulate the kind of network cross

traffic that we have found important in this study. The existence of better topologies would be most

welcome. While we have been running our code successfully on a real network—PlanetLab—for

55

over a year, PlanetLab is difficult to use for the sort of controlled churn experiments we describe

here.

In addition to more realistic network models, we would also like to include more realistic

models of churn in our future work. One idea that was suggested to us by an anonymous reviewer

was to scale traces of session times collected from deployed networks to produce a range of churn

rates with a more realistic distribution. We would like to explore this approach. Nevertheless, we

believe that the effects of the factors we have studied are dramatic enoughthat they will remain

important even as our models improve.

Finally, in this work we have only shown the resistance of the Bamboo lookup layer to

churn. As noted in Chapter 2, the ability of a DHT to handle churn at the storage layer is limited by

the available bandwidth, and we do not expect a DHT storing large amounts of data to handle the

degree of churn we have studied in this chapter. That said, we do show inChapter 5 that OpenDHT

can handle the churn on PlanetLab, and we would like to study the resilience of other DHT-based

primitives—such as multicast—to churn in the future.

3.6 Conclusion

In this chapter we have summarized the rates of churn observed in deployed peer-to-peer

systems and shown that existing DHTs exhibit less than desirable performance at the higher end

of these churn rates. We have presented Bamboo and explored variousdesign tradeoffs and their

effects on its ability to handle churn.

The design tradeoffs we studied in this chapter fall into three broad categories: reactive

versus periodic recovery from neighbor failure, the calculation of timeouts on lookup messages, and

proximity neighbor selection. We have presented the danger of positive feedback cycles in reactive

recovery and discussed two ways to break such cycles. First, we can make the DHT much more

cautious about declaring neighbors failed, in order to limit the possibility that we will be tricked

into recovering a non-faulty node by network congestion. Second, we presented the technique of

periodic recovery. Finally, we demonstrated that reactive recovery is less efficient than periodic

recovery under reasonable churn rates when leaf sets are large, asthey would be in a large system.

With respect to timeout calculation, we have shown that TCP-style timeout calculation

performs best, but argued that it is only appropriate for lookups performed recursively. It has long

been known that recursive routing provides lower latency lookups thaniterative, but this result

presents a further argument for recursive routing where the lowest latency is important. However,

56

we have also shown that while they are not as effective as TCP-style timeouts, timeouts based on

virtual coordinates are quite reasonable under moderate rates of churn. This result indicates that

at least with respect to timeouts, iterative routing should not be infeasible under moderate churn.

Moreover, as suggested by the results in Chapter 7, the ease with which lookup can be parallelized

under iterative routing may afford additional resilience to churn.

Concerning proximity neighbor selection, we have shown that global sampling can pro-

vide a 24% reduction in latency for virtually no increase in bandwidth used. By using an additional

40% more bandwidth, a 42% decrease in latency can be achieved. Other techniques are also ef-

fective, especially our adaptations of the Pastry and Tapestry nearest-neighbor algorithms, but not

much more so than simple global sampling. Merely sampling our neighbors’ neighbors or inverse

neighbors is not very effective in comparison. Some combination of globalsampling an any of the

other techniques seems to provide the best performance at the least cost.

57

Chapter 4

Storage

In the previous chapter we explored how to implement DHT lookup in a churn-resilient

manner. While it is important as a building block, the lookup interface is too low-level for many

DHT applications, which instead require higher-level functionality such asput/get or DOLR. As

discussed in Chapter 1, these interfaces share a common piece of functionality: fault-tolerant storage

of key-value pairs. While some applications can implement their own fault-tolerant storage using the

soft-state approach described in Chapter 2, for many others fault-tolerance is much more efficiently

supported by the DHT itself. This chapter describes Bamboo’s fault-tolerance storage layer.

4.1 Background

As described in the introduction, the goal of Bamboo’s storage algorithm is tostore a

given a key-value pair(k,v) on predi(k) and succi(k) for i ∈ [1, `′], where`′ ≤ `, the leaf set radius.

To simplify the remainder, we introduce the following terms. We denote byr the number of replicas

for each value; i.e.,r = 2`′. We call the set of Bamboo nodes that store values under keyk the

replica setfor k, and we denote this setR(k). We refer to members of this set as replicas fork when

the meaning is clear. Furthermore, we denote byR−1(A) the set of keys for which a nodeA stores

replicas, and we say thatA is responsiblefor the keys inR−1(A).

To see why this problem is so challenging, consider Figure 4.1, which illustrates the

process of storing three values with the same key onto six intermittently-availableDHT nodes.

Initially, R(k) = {A,C,D,F}, so when the black value is put, it is stored by nodesA, C, D, andF .

Then nodeD fails, and nodesB andE join, changingR(k) to {B,C,E,F}. Next, a white value is

put. Then nodeC fails, and nodeD recovers, changingR(k) to {A,B,D,E}. Then, a grey value is

58

kA
C D

F

Step 1: A black value is put.

k
B

A
C

E
F

Step 2: D fails, whileB andE join.

k
B

A
C

E
F

Step 3: A white value is put.

k
B

A
D

E
F

Step 4: C fails, andD recovers.

k
B

A
D

E
F

Step 5: A grey value is put.

k
B

A
C D

E
F

Step 6: C recovers.

k
B

A
C D

E
F

Step 7: The desired final state.

Figure 4.1:The storage problem.Values are put into the DHT as nodes fail and recover. The goal
of the storage algorithm is to reach step 7 from step 6, even though no nodeknows all the values.

put. Finally, nodeC recovers, changingR(k) to {B,C,D,E}. While all values were stored onto the

correct set of nodes at the time they were put into the system, by Step 6 in the figure, they are no

longer all stored at the correct nodes. Further complicating the problem, no one node is storing all

three values.

Our initial approach to solving this problem was to have the root for each key keep track

of nodes as they joined and left its leaf set and thereby determine when a value was no longer

sufficiently replicated and on what nodes new replicas should be created. Although this technique

seems relatively straightforward, there are a number of tricky corner cases in implementing it, and

we were never able to complete a working implementation in Bamboo.

Our next thought towards solving the problem was that rather than carefully tracking all

node joins and departures, we should instead implement a continuous process in which each mis-

placed value “migrated” towards its correct set of replicas. In working out the details of such a

process, we we unknowingly re-invented simple epidemic techniques. Shortly thereafter, we redis-

covered the epidemic literature (e.g. [DGH+87, JT75, VvRB02]). Because many of the techniques

we will explore later in this chapter are in fact special cases of a broaderspectrum of epidemic

algorithms, we present a brief overview of these algorithms before continuing.

59

4.2 Introduction to Epidemic Algorithms

In this section we briefly describe two classes of epidemic algorithms,anti-entropyand

rumor mongering. We follow the terminology of Demers et al. [DGH+87], who present a compre-

hensive overview of the field.

4.2.1 Anti-Entropy

Consider a setR of r replicas for a database. For the moment, let us assume that once a

key-value tuple is written to this database, it cannot be changed, so that theconsistency problem is

reduced to ensuring that every replica contains every tuple. This situationcorresponds to the the set

of Bamboo nodes inR(k) trying to ensure that they each have all values put underk, for example.

Anti-entropy is a procedure run periodically by each replica whereby it contacts a remote

replica and synchronizes its database with that peer, transferring eachtuple known only to one

replica to the other. When peers are chosen uniformly and randomly, this technique is known to

propagate a new tuple to every replica inO(logr) periods [Pit87].

There are two basic variations of anti-entropy:pushandpull. In push, every period a

replicaA chooses a random peerB and sendsB all the values thatA is currently storing. In pull,A

chooses a random peerB and asks it for all the values thatB is currently storing.

While both push and pull anti-entropy converge inO(logr) periods, the constants are

different. In particular, pull is more efficient when most replicas alreadyhave a value; since the

probability of contacting a random replica that does not know the value is small, a replica that does

not know the value is likely to contact one that does. However, if only one replica has a value, a

replica using pull that does not have the value is unlikely to chose the one other replica that does.

In contrast, push more efficiently moves a value stored by only one replica tothe rest, since early in

the process each peer this one replica chooses is unlikely to already havethe value.

4.2.2 Rumor Mongering

Consider again our set of replicas, and consider a tuple that originally exists in only one

replica. Rumor mongering proceeds as follows: as soon as a replica learns about a new tuple, it

starts sending it to other replicas. Each time it sends the rumor to a replica that isalready aware of

it, however, it will stop spreading the rumor with probability 1/p. This process begins with the first

replica and continues until every replica that learns about the tuple has given up spreading it.

60

Unlike anti-entropy, rumor mongering does not guarantee that every replica receives the

tuple.1 However, rumor-mongering is much more efficient at propagating a previously unknown

value to a set of replicas for low cost. For example, whenp = 1, the expected fraction of replicas

that receive the tuple is 0.8, while the expected number of messages sent is only 1.74r [DGH+87].

4.2.3 Epidemic Algorithms and System Stability

We close this section with a note concerning the stability of epidemic algorithms. Vogels,

van Renesse, and Birman [VvRB02] note a condition in many group communication technologies

that they compare to thrashing in an operating system: in trying to recover from an apparent host

failure, the system often causes further network stress, which itself is often mistaken for the failure

of other hosts, resulting in a positive feedback cycle. This behavior is similar to that we observed in

FreePastry in Chapter 3.

In contrast, with epidemic algorithms, we are always able to move the system from an

incorrect state to a “more correct” one; each round of anti-entropy or rumor mongering has the

potential to improve the state of the system, and this potential is largely independent of the period

between rounds. For a given level of sustainable network stress, then, we can choose a period to

avoid ever overloading the network. Given sufficient load, even this throttling will not save the

system, but it does prevent the network overload that would otherwise occur with even lower stress

levels. As another parallel to Chapter 3, one can consider the leaf set maintenance algorithm of

Bamboo as a simple form of anti-entropy; the database being shared is just alist of the nodes whose

identifiers lie in a local area of the ring.

4.3 Epidemic Algorithms Meet DHTs

We now describe Bamboo’s storage subsystem’s algorithms and show their relationship

to epidemic algorithms.

4.3.1 Replica Synchronization

In replica synchronization, members of a replica set contact each other and pull values

from their peers. Figure 4.2 illustrates this process: a replicaA periodically chooses a random

replicaB 6= A, computes the set of keys for which they are both responsible,R−1(A)∩R−1(B), and

1We note that the probability of this failure case can be driven arbitrarily low;when rumors are passed to recipients
chosen uniformly and randomly, the fraction of replicas that do not receive a tuple is exponentially small inp.

61

Node B

1
(k , v)

3 3
(k , v)

Node A

1 1
(k , v)

(k , v)
2 2

fetch value (k , H(v))
2 2

(k , v)
2 2

1 1 2 2{(k , H(v)), (k , H(v))}

−1
fetch keys in R (A) R (B)

−1

1

Figure 4.2:Replica synchronization.NodeA asks nodeB which key-value pairs it is storing in their
common range. NodeB replies with a(k,H(v)) pair for each key and value it is storing, whereH(v)
is the SHA-1 hash ofv. A compares these pairs with those it is storing, and then asksB for the pair
corresponding to(k2,H(v2)), whichA does not recognize. Finally,B sends(k2,v2) to A. Note that
B need not know all the pairs for this procedure to work. Also,B will learn about(k3,v3) when it
initiates replica synchronization withA.

performs anti-entropy withB over this set. Specifically, for each key-value pair(k,v) that B has

stored, it will sendA the pair(k,H(v)), whereH(v) is the SHA-1 hash ofv. Each node indexes the

values it has stored by their keys and SHA-1 hashes, andA usesB’s response to determine whether

B has any values it does not. If so,A pulls those values fromB.

Basic properties of replica synchronization We note that replica synchronization is just simple

anti-entropy. Most importantly, it is easy to see that it is correct in the following sense: given that

at least one replica inR(k) has a value, all replicas inR(k) will eventually obtain it. It follows from

the epidemic literature that replica synchronization is also efficient in the sense that the value will

be fully replicated in a number of periods logarithmic in the number of replicas. Furthermore, since

we expect the replicas inR(k) to be mostly consistent most of the time, we see from the literature

that pull is a better approach than push for replica synchronization.

As currently specified, however, the bandwidth cost of replica synchronization is propor-

tional to the number of values stored on each replica; in each synchronization betweenA andB, B

sendsA one(k,H(v)) pair for every valueB stores. In the remainder of this section we explore ways

to reduce this cost.

Using Merkle trees as summaries As pictured in Figure 4.3, a Merkle tree [Mer88] is a data

structure that allows one to check the integrity of anm-byte subrange of an-byte file using only

O(mlogn) state. In the bottom row of the figure,d1,d2, . . . represent the blocks of a file. Each

interior node of the tree is the secure hash of its two children; e.g.,h6 = h(h3 ·h4), where· represents

62

1

d dd d

h h

d dd d

h h

h h

h

1 2 3 4 5 7 86

4

5

7

6

32

Figure 4.3:A Merkle tree.If we already know the root of the tree and its height, we can verify the
integrity of blockd3 using only the data inside the dotted line.

concatenation.

Assume that a nodeA knows the root of the tree,h7, and its height, and another nodeB

sends itd3 and all of the information contained inside the dotted line in the figure. NodeA can check

the integrity of thed3 sent byB as follows. By the one-wayness of the secure hash, it is presumably

hard to find anotherh5 or h6 such thath7 = h(h5 ·h6). So by checking that the root it already knows

is in fact equal toh(h5 ·h6), A verifies the integrity ofh5. Likewise, it is hard to find anotherh1 or h2

such thath5 = h(h1 ·h2), and in this wayA verifies the integrity ofh2. Finally, A usesh2 = (d3 ·d4)

to verify the integrity ofd3.

Using Merkle trees in anti-entropy We can use Merkle trees to reduce the cost of anti-entropy

between two hostsA andB as follows: we sort the(k,H(v)) pairs for allk∈ R−1(A)∩R−1(B) and

build a Merkle tree above them. The anti-entropy process between two hostsA andB then proceeds

as shown in Figure 4.4. First,A sendsB the SHA-1 hash of the root and the height of its tree. If

this root and height are the same asB’s, then the two hosts have the same set of(k,H(v)) pairs,

soB sends back a success message and the process is complete. Otherwise,B sends back its root’s

children. Next,A compares each of its own root’s children toB’s; on each hash where the two differ,

A recurses, fetching the associated child blocks fromB. This process continues until the leaf (data)

blocks are reached, after whichA will have fetched fromB any(k,H(v)) pairs for valuesB has that

A does not. Finally,A can fetch these values fromB, and the process is complete.

We make two observations about this process. First, if the Merkle trees forA andB differ

only along the right-hand side, then the cost to discover their differencesis O(d logn), whered is

the number of values in which they differ andn is the total number of values they store. Compared

to the cost of the algorithm without Merkle trees,O(n), this is a marked improvement for mostly-

63

6

i4

i7

i

k

v
3

3

k

v
4

4

k

v
5

5

k

v
6

6

i1 i2

i5 i9

i8i3

k

v
1

1

k

v
2

2

k

v
3

3

k

v
4

4

k

v
5

5

k

v
7

7

k

v
6

6

i1 i3

i5

i2

i8fetch children of

8 87 7(k , H(v)), (k , H(v))

i8i3 ,

i9fetch children of

8 8

8 8fetch value (k , H(v))

(k , v)

i9,5i
Node B

k

v
7

7

k

v
8

8

Node A

−1

7root in R (A) R (B) is i

i

−1

10

k

v
1

1

k

v
2

2

Figure 4.4:Replica synchronization with Merkle trees.NodesA andB differ in the shaded blocks.
NodeA asksB for the root of the Merkle tree that covers their shared range.B responds, andA asks
for the children of any blocks it doesn’t recognize. This process continues untilA discovers a leaf
it doesn’t recognize, after which it asksB for the value associated with that leaf. Unlike the basic
form of anti-entropy, which requiredO(n) communication for two nodes storingn values, this form
requires onlyO(d logn) communication, whered is the number of differences between the values
the two nodes are storing.

64

Before insert:

f(0C,97,40)=0

74 3F 53 D0 F0 57 F8 78 F5 42 46 CC 1C 0C 97 40 D0 DB 5840

block

f(74,3F,53)=0

After insert:

1A 46 CC 1C 0C 97 40 D0 DB74 3F 53 D0 F0 57 F8 78 F5 42 40

blockblock

f(74,3F,53)=0 f(42,40,1A)=0 f(0C,97,40)=0

1A inserted

all further blocks unchanged

Figure 4.5: Picking block boundaries using Rabin functions.An insert may change the block in which
it occurs, split an existing block into two (shown here), or cause two existing blocks to be combined; the
remainder of the blocks in a stream remain the same.

synchronized nodes. However,A andB only realize this cost savings if all of their differences are at

the end of the sorted set of(k,H(v)) pairs. A single difference, for example, at the head of this set

will offset the block boundaries in the Merkle tree, causing all leaf and interior blocks to differ, and

increase the cost back toO(n). To fix this problem, we need to find a way to compute the blocks in

the Merkle tree such that they do not change much after insertions.

Picking block boundaries with Rabin functions A Rabin function [Rab81], is a functionf

mappingn one-byte inputs uniformly and randomly to the set{0, . . . ,m−1}. In other words,

f :

n times
︷ ︸︸ ︷

B×B×·· ·×B→{0, . . . ,m−1}

whereB is the set of possible byte values. We can place a block boundary beforebyte i in a file

if the value of f on then bytes proceeding bytei is 0. Sincef is uniform and random, we expect

to evaluate it on averagem times before finding a zero; thus the expected block size from this

technique ism. In addition, we set a minimum and maximum block size (such asm/2 and 2m) to

avoid choosing blocks that are too small or large. Figure 4.5 shows an example of computing block

boundaries in this manner forn = 3. There,f (0C,97,40) = 0, so the block in the upper half of the

figure ends on byte 40.

The benefit in picking block boundaries by the value of the underlying datais illustrated in

the lower half of Figure 4.5, where the byte 1A has been inserted into the stream. In this example,

65

f (42,40,1A) = 0, so this change introduces a new boundary, splitting the original block in two.

However, sincen = 3, the boundaries of all blocks three or more positions after the change are

unaffected; in particular, the next block still starts with the byte value D0. Ingeneral, the insertion,

modification, or deletion of any byte either changes only the block in which it occurs, splits that

block into two, or combines that block with one of its neighbors. All other blocks in the stream are

unaffected.

The application of Rabin functions to our anti-entropy problem is straightforward. Given

our sorted set of(k,H(v)) pairs, we pick block boundaries in the set using Rabin functions. Next,

we use Rabin functions again to compute the boundaries of the indirect blocks at the next level up

and continue in this manner until we have only one indirect block at a level; thisblock is then the

root of the tree.

Picking block boundaries by prefix Another technique for picking block boundaries is to group

all of the(k,H(v)) pairs with a common prefix into a block. If this block is larger than a certain size,

we lengthen the prefix that a pair must match by one bit, splitting the block into two. In this way,

our Merkle tree becomes a trie. Tries also handle insertions and deletions well; note that when we

add a new(k,H(v)) pair to a trie or remove an existing one, the only blocks that change are those

that share prefixes with that pair.

Bamboo uses this method of picking block boundaries, as the code for it is simpler than

that using Rabin functions. Furthermore, Bamboo uses 6-bit digits when computing prefixes for

the following reasons. We can summarize each(k,H(v)) pair by its SHA-1 hash, and we can store

64 SHA-1 hashes in a single, 1,500-byte network packet with 220 bytes left over for headers and

other information. As a result, we can use 6-bit digits in our prefixes (as 26 = 64), giving the trie a

branching factor of 64 and reducing its maximum height by a factor of 6, and still fit each interior

node of the trie into a single network packet.

The choice of sorting order Above we mentioned that it is necessary to sort a node’s(k,H(v))

pairs before building a Merkle tree over them. Otherwise, two nodes with the same values could

produce different trees. Here we show that the sorting order we choose is also important.

For example, consider that pairs are sorted in the obvious way, lexigraphically by the bits

of each(k,H(v)) pair, and consider two nodesA andB. Further consider thatA temporarily loses

connectivity, perhaps because it crashed, and during this period a number of additional tuples are

put into the system. What happens whenA regains connectivity and synchronizes its database with

66

h1

h4 h5 h7h6

h2 h3

(10,15,−) (11,6a,−) (14,be,−)

h4 h5 h7h6

h2 h3

h1

(10,15,−) (11,6a,−) (14,be,−)(05,44,−) (08,29,−)(07,80,−)

(05,44,−) (07,80,−)

(01,d7,−)

(01,d7,−)(08,29,−) (02,3c,−)

(02,3c,−)

Figure 4.6:The importance of sort order.Above, the (timestamp, key, value) tuples have been sorted
by their keys before building the Merkle tree, and the new blocks—shown underlined—are found
through largely distinct paths from the root. Below, the tuples have been sorted by timestamp, and
the new blocks share most of their paths.

B?

The upper half of Figure 4.6 illustrates this example. Since the keys used in a DHT are

generally the output of a secure hash function, they are effectively chosen uniformly at random.

They will thus fall in random places in the sorted order and thereby end upin random leaves of

the Merkle tree. As such, for each mismatched key, several distinct intermediate hashes must be

transmitted and compared, at a cost of several round trip times for each missing value corrected.

Since temporarily losing connectivity is a common reason that nodes fall out of synchronization,

this concern is an important one.

Assume instead that the DHT node at which a put originates timestamps the key and value

put as they enter the system, and assume that we now sort(t,k,H(v)) tuples by their timestamps,t,

breaking ties using the previous sort order. This change is illustrated in thelower half of Figure 4.6.

Note that ifA andB were synchronized beforeA lost connectivity, then the new values put into the

system whileA was unavailable will all end up in a continuous range of the leaves of the Merkle

tree. Unlike when tuples were sorted by key, then, the differences in theirMerkle trees should be

confined to the side with the more recent tuples, and each traversal from the root to the leaves will

lead to the discovery of many differences, resulting in far fewer round-trip times than before.

Of course, poor clock synchronization can reduce the benefits of this technique, but it is

almost inconceivable that it would perform worse than sorting by key—theclocks of the nodes in

67

the DHT would have to be set to random values.

One challenge that does arise in sorting by timestamp is that there must now be a separate

Merkle tree for each shared subrange of the keyspace. When sortingby key, each node can build a

single Merkle tree; the differences in the ranges covered by these treeswill be discovered during the

process of synchronization. In contrast, when sorting by timestamp, eachnode buildsr −1 trees,

one for each unique subrange of keys that it shares with its neighbors.

One more slight concern remains: when violations of transitive connectivityof the kind

discussed in Chapter 6 occur, nodes will disagree with each other as to which other nodes should

be in their leaf sets. In such cases, they will also disagree as to the subranges for which Merkle

trees should be built. Fortunately, any two nodes that can connect to the same subset of their proper

neighbors in the DHT will agree about these subranges and will still be ableto synchronize. The

others must wait until the anomaly heals. In practice, such anomalies do not persist forever, and we

have not found this limitation to be a problem on our PlanetLab deployment.

4.3.2 Discarding Unwanted Values

As we noted above, as long as one replica in a set contains a value, they allwill eventually.

We must also protect against the case where no replica contains a value, however. This circumstance

can occur for a number of reasons. First, a partition in the DHT may cause avalue to be replicated

on the wrong set of hosts; when the partition heals,2 we would like the value to be moved to the

correct set of hosts. Consider Figure 4.7, for example. Normally, the three UC Berkeley nodes

are spread around the ring, and none of them are inR(k); when UC Berkeley’s connection to the

Internet fails, however, they form a three-node ring of their own, andall three are inR(k). Any puts

on keyk that occur during this period from within Berkeley will thus be stored only onthe Berkeley

nodes. When the partition heals, however, they must be moved to the originalR(k), even though

none of the Berkeley nodes are in that set.

The problem of puts that occur during partitions is actually a special case of the more

general problem of massive join events. Consider again Figure 4.7, andassume that originally

the DHT only contained the three Berkeley nodes. Now consider that all ofthe grey nodes join

simultaneously. Just as before, some values stored on the Berkeley nodes must be moved to replica

sets of which they are not members, motivating the need for an additional mechanism beyond replica

2A Bamboo node periodically checks for and corrects the effects of network partitions by trying to rejoin the network
through nodes that were its neighbors in the past but to which it has since lost connectivity.

68

Original
R(k)

Partition
During

Before/After Partition

During Partition

Berkeley

R(k)

Nodes

k

k

Figure 4.7:The need for the discard algorithm.The figure on the left shows a Bamboo ring; the
three black nodes are all at UC Berkeley. When Berkeley’s connectionto the Internet fails, these
three nodes can no longer communicate with any others, so they assume the others have failed and
form a three-node ring of their own. Any puts on keyk during this partition are stored on the
Berkeley nodes. Once the partition heals, however, these values must bemoved to the originalR(k)
shown on the left. Replica synchronization will not accomplish this movement, however, as it only
involves communication withinR(k), and this set no longer includes any of the Berkeley nodes.

synchronization.3

To fix this problem, we introduce the the discard algorithm, which allows nodes not in

R(k) to safely discard values stored underk. Our original implementation of the discard algorithm

worked as follows: when a node that was no longer inR(k) noticed that it was storing a key-value

pair (k,v), it simply re-put it. While this approach is very easy to implement, it is not terribly

efficient; in the case of massive joins described above, each original replica pushes each value to

each new one, leading to aO(r2) cost.

A simple optimization for the discard algorithm is as follows: rather than re-put avalue

it should no longer be storing, a node sends the value to a random node in the current replica set.

The current Bamboo implementation uses this procedure. We note that this procedure is efficient,

sending only one message per original replica. It is also reasonably robust: consider a massive

join event, in which all of the original replica set is replaced by new nodes.Table 4.1 shows the

probability that at leastmnew replicas receive a value ifn old replicas perform the discard algorithm

3Our discovery of this need was actually due to massive join events as described here. Such events were one part of a
larger testing framework we used to debug the early storage management code.

69

m
n 1 2 3 4 5 6 7 8
1 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 1.000 0.875 0.000 0.000 0.000 0.000 0.000 0.000
3 1.000 0.984 0.656 0.000 0.000 0.000 0.000 0.000
4 1.000 0.998 0.902 0.410 0.000 0.000 0.000 0.000
5 1.000 1.000 0.974 0.718 0.205 0.000 0.000 0.000
6 1.000 1.000 0.993 0.878 0.461 0.077 0.000 0.000
7 1.000 1.000 0.998 0.950 0.670 0.221 0.020 0.000
8 1.000 1.000 1.000 0.980 0.810 0.389 0.070 0.002

Table 4.1:The effectiveness of the discard algorithm.After a massive join event, where the entire
original replica set is replaced by new nodes, each original replica sends each value for which it
is no longer responsible to a random new replica. This table shows the probability that at leastm
new replicas receive a value ifn old replicas perform the discard algorithm. For example, if five old
replicas do so, there is a 71.8% chance that at least four distinct new replicas will receive a value.
(The remaining replicas will eventually get one through the replica synchronization process.)

for a system withr = 8. For example, if five old replicas perform the discard algorithm, there is a

71.8% chance that at least four distinct new replicas will receive a value. (The remaining replicas

will eventually get one through the replica synchronization process.)

4.4 Handling Mutable Data

DHTs generally offer only eventually-consistent semantics: if the system isstable, even-

tually all clients will see all values put. Moreover, using insights from the epidemic literature, it is

reasonably easy to support some degree of mutable data.

A straightforward approach to making values in the DHT mutable would be that each

new value put overrides any previous value under the same key. While thisapproach at first sounds

reasonable, it is difficult to implement in the face of concurrent puts to the same key issued from

different nodes.

In special circumstances, however, the problem is tractable: if there exists some total

ordering over all possible values, DHT nodes can use this ordering to choose between them, and so

long as this ordering is a deterministic function of the values themselves, all nodes in the DHT will

eventually agree as to the current value under each key.

As an example of this approach, a remove operation is implemented in Bamboo in the

following manner. Each value put into the system may contain the SHA-1 hash of a unique secret,

70

s. Moreover, we allow a certain class of values calledremoves. If a DHT node has a put(k,v,H(s)),

and it learns about a remove(k,H(v),s), it always discards the put in favor of the remove. In this

way, a value can be removed from the system by simply putting a corresponding remove; in the total

ordering used, removes always dominate their corresponding puts.

Note that if the system did not store removes, removed values could be resurrected as

follows. Consider a nodeA that crashes, and consider that whileA is down a value it is storing

is removed from all remaining replicas. WhenA comes back up, the replica synchronization and

discard protocols will propagate the value back ontoA’s neighbors, effectively re-inserting it into

the system. By storing the remove like any other value, and by always preferring a remove over its

associated put, we prevent such resurrections.

We discovered the idea of removes from the epidemic literature, where they are called

death certificates[DGH+87]. That literature also contains a caution: a DHT node cannot discard

any remove for which a put may still remain in the system. Since puts may exist on crashed nodes

that cannot be contacted, discarding a remove must thus be done with care. In Bamboo, all values

put into the system contain a time-to-live (TTL), and a node discards a valuewhen this time passes.

To safely remove a value, then, one must simply assure that the TTL for a remove is longer than the

TTL remaining for its corresponding put.

4.5 Related Work

We developed the Bamboo replica synchronization and discard algorithms concurrently

with, but independently from, Cates [Cat03], who was working on the DHash system at the time.

Our replica synchronization algorithm is virtually identical to his local maintenance algorithm, and

our discard algorithm is virtually identical to his global maintenance algorithm. Since Cates was

working on Chord,R(k) corresponds to ther successors ofk, rather than ther/2 predecessors and

successors of it. Also, DHash uses erasure codes instead of replication for redundancy. For the

purposes of this chapter, these differences are largely irrelevant, however.

Our use of Merkle trees in synchronization followed from our use of themin Pond

[REG+03], the OceanStore [KBC+00] prototype. Pond is a versioned file system, and it uses Merkle

trees to certify the contents of each version and to prevent storing data shared between multiple ver-

sions multiple times. These same Merkle trees can be used to detect differences between versions,

and that feature lead to our insight that they could be used for synchronization in Bamboo.

At the time, we had also just finished our work on Value-Based Web Caching[RLB03],

71

where we used Rabin functions to chose block boundaries for efficientduplicate transfer elimination

in HTTP. (Rabin functions have also been used elsewhere for similar purposes, including in file

systems [MCM01] and packet-level network compression [SW00].) We developed the first replica

synchronization algorithm in Bamboo by combining Merkle trees and Rabin functions as described

in this chapter.

Messages from the OceanStore developers’ mailing list [Rhe03a, Rhe03b] show that we

had the basics of replica synchronization and the discard algorithm working in the Bamboo code

base on April 18, 2003. Shortly thereafter, in May 2005, Cates’ thesis was published, and we

realized he had come up with a very similar solution to roughly the same problem. After reading

his thesis, we switched from using Rabin functions to using tries to pick block boundaries, but we

made no other changes to our algorithms.

A remaining difference between DHash and Bamboo is that DHash sorts values by key

rather than timestamp. As discussed above, we believe this is less efficient, but only intuitively so;

we have not compared the two in simulation, for example.

4.6 Future Work

Above we have discussed the existing Bamboo storage layer. In this sectionwe present

several improvements we plan to make in the future.

4.6.1 A Better Discard Algorithm

We have shown through analysis that the existing discard algorithm in Bambooworks well

when none of the original replicas for a value remain in the replica set aftera massive join event.

However, in that analysis we assumed that all original replicas survive long enough to discard each

value for which they are no longer responsible. In the case that the DHT isstoring many values,

however, some replicas may leave the system before transferring all of their state.

Consider that only one original replica survives long enough to perform the discard algo-

rithm for a value. In the existing algorithm, only a single new replica will receive the value, and the

system will be vulnerable to a single failure until the replica synchronization algorithm copies the

value across the replica set.

A better algorithm for discarding values is clear from the epidemic literature: if we were

to use rumor-mongering withp = 1 for discarding values, each original node would continue to

72

send a value to new replicas until finding one that already has the value (and each node that receives

a value would do the same). According to the epidemic literature, this change would increase the

fraction of new replicas that receive a value in this example to 80% on expectation, for only a traffic

cost of 1.74r. Moreover, in the case where all of the original replicas survive, the traffic cost would

still only increase over the existing algorithm by this constant factor. We thussee this change as a

promising one for Bamboo (as well as DHash).

4.6.2 Accounting for Spatial Distributions

In our analysis above, we have ignored the fact that some nodes in a replica set are closer

to each other in network latency than others. Since the replica synchronization algorithm requires

multiple round trips, nearby replicas should be able to synchronize more quickly than remote ones.

Also, synchronizing nearby replicas uses less total network resources. In general, then, we would

prefer to synchronize nearby members of each replica set more often. There are limits to which this

general goal can be achieved and still produce timely convergence, but the results in the epidemic

literature are nonetheless surprising.

Consider a system where all the hosts lie along a linear network. If each host talks only

to its immediate neighbors, the number of cycles to converge using anti-entropyis O(N), and the

average convergence traffic per link per cycle isO(1). On the other hand, if each host chooses its

anti-entropy partners randomly, convergence happens inO(logN) cycles and the traffic per link per

cycle isO(N). These two strategies represent extreme choices in replica selection.

Kempe, Kleinberg, and Demers showed that there is also a middle ground; for hosts ar-

ranged with uniform density in Euclidean space, they proved that using a special selection criteria

a new tuple introduced at one host will reach all hosts within distanced of its origin in O(log1+ε d)

time [KKD01]. In practice, the effects of such spatial bias can be dramatic:using a topology mod-

eled on the Xerox corporate intranet, Demers et al. showed that by choosing anti-entropy partners

according to distance, convergence time increased by less than a factor of two while reducing traffic

across a bottleneck trans-Atlantic link by over a factor of 30.

Unlike with routing table neighbors, the members of a node’s leaf set cannotbe chosen for

proximity; they are instead fixed by a node’s position in the ring. As such, weview spatially-aware

epidemics as a promising technique for reducing the load imposed by consistency traffic in DHTs.

73

4.6.3 Further Reducing the Cost of Temporary Failures

As discussed in Chapter 2, every time a node permanently leaves the DHT, wemust copy

data to other nodes in order to restore replication. Furthermore, when newnodes join, existing nodes

will no longer be responsible for some of the data they are storing, and afterdiscarding that data to

new nodes, they can delete it from their local storage.

A problem with current algorithms, however, is that they do not distinguish permanent

failures from temporary ones. If a node goes offline temporarily, the DHTwill begin re-replicating

all of the data it stored immediately. If this node then recovers, this replication traffic will have

merely wasted resources. A related problem is that of a short join: when anew node joins the

DHT, replicas are moved onto it and deleted from existing nodes; if the new node departs shortly

thereafter, replicas will have to be recreated on the same nodes that just deleted them.

Although it is not possible to precisely distinguish temporary failures from permanent

ones, we can approximate the distinction by introducing arepair threshold[BTC+04]: by setting

an original replication factor ofn, but only re-replicating data when the available redundancy falls

below somem< n, we can prevent many temporary failures from triggering repair.

The DHash group has recently developed an interesting adaptation of this idea to storage

management algorithms like those used in DHash and Bamboo [DS]. They startby assuming the

system has a roughly constant size over time, and by assuming each node ispart of the system some

fractiona of the time. They then assume that no node ever removes a replica from its local storage,

and they modify the replica synchronization algorithm to only create a new replica for a value if

less thanr are available in the 2r closest nodes in the ring. Using this technique, they show that the

expected degree of replication per value converges to 2r/a, a reasonable cost for a system such as

PlanetLab where each node has relatively high availability.

In such a system, a temporary failure of a single node causes no data movement unless

it causes the number of replicas for an item to fall belowr. Likewise, when a new node joins, no

data is moved onto it unless its join pushes enough replicas out of the 2r closest nodes to some key

to cause the replication factor to fall belowr. In both cases, it is unlikely that data will be moved,

reducing much of the cost incurred by the current design due to temporary failures and joins.

One complication of this design is that the replica synchronization algorithm mustbe

modified to keep track ofwhich r or more nodes are storing each value. In DHash, this is imple-

mented by storing that information locally with the values. Furthermore, if the replication factor

for an item is greater thanr, no new replicas should be created. To prevent their creation, nodes

74

that have replicas of some value must hide this fact from those that do not during replica synchro-

nization. (Otherwise, the latter will pull a copy from the former upon discovering they are missing

each such value.) In DHash, this hiding is accomplished by building a separate Merkle tree for each

neighbor, increasing the memory cost of storing the Merkle trees by a factor of 2r. Because this cost

is too high, DHash now builds Merkle trees on demand, reducing how often synchronization can be

performed, and only synchronizes with a few neighbors at a time.

Despite the additional difficulties involved in implementing this extension to replica syn-

chronization, we are still in favor of it, as it saves a great deal of bandwidth, which is usually the

limiting resource in a DHT.

4.6.4 Controlled Performance Studies

One limitation of this chapter is that we have yet to perform a careful study ofthe effec-

tiveness of the techniques described here. There are several reasons we have not done so. First,

Cates performed a study of the DHash algorithms in his work, and our algorithms are quite simi-

lar to those, so a performance study seems at least a little redundant. That said, it would be nice to

compare the relative benefits of sorting values by timestamp rather than key. Second, our algorithms

seem to work in practice. As we will show in a Chapter 5, our OpenDHT deployment on 200–300

PlanetLab seems to store data effectively despite the churn it experiences. Finally, a performance

evaluation has simply been low on our list of priorities. The latency of get operations on OpenDHT,

for example, matters much more to our users at the moment (see Chapter 7). Asthe system be-

comes more popular and stores more and more data, however, the efficiency of the storage system

will become important. At that point we hope to profile the system as it stands, and we also plan to

implement and test the performance optimizations listed above.

4.7 Summary and Discussion

In this chapter we have shown a successful combination of DHTs and epidemic algo-

rithms. We believe the two are a natural match. Epidemic algorithms provide a robust, efficient, and

simple way to maintain consistency between replicas, but do not naturally support a system in which

each data value is replicated by only a subset of nodes. In contrast, DHTs provide a partitioning

suitable for choosing a set of replicas for each data value in a system, butrequire an algorithm for

maintaining their consistency.

75

We are not the first to recognize the value of partitioning a large system to limit the degree

of replication; Demers et al. noted it in their work. We believe we were the first to note the utility of a

DHT for this purpose, however. As far as we can tell, while Cates clearly used epidemic techniques,

he appears to have been unaware of the epidemic literature and was apparently unaware of their

status as such. Moreover, while the Kelips [GBL+03] system uses epidemic techniques to build a

DHT lookup layer, they do not discuss the application of these techniques toreplica management.

76

Chapter 5

OpenDHT

In Chapters 3 and 4, we presented the design and implementation of the lookupand

storage layers of a DHT. By going to the Bamboo web page and downloadingthese components,

would-be application developers obtain a useful building block on which to construct their systems.

Nonetheless, maintaining a running DHT remains non-trivial. At least with current technology,

DHT nodes cannot run behind NATs, so a group of machines on the publicInternet on which to

run the DHT must be acquired. Scripts must be written to keep the DHT code running on these

machines, and someone must be around to reboot them in case they experience kernel bugs or fix

them when they experience hardware failures.

As DHT-based applications proliferate, it is thus natural to ask whether every application

needs its own DHT deployment, or whether a shared deployment could amortize this operational ef-

fort across many different applications. While some applications do in factmake extremely sophis-

ticated use of DHTs, many more access them through such a narrow interface that it is reasonable

to expect they might benefit from a shared infrastructure.

In this chapter, we report on our efforts to design and build OpenDHT (formerly named

OpenHash [KRRS04]), a shared DHT deployment. Specifically, our goal is to provide a free, public

DHT service that runs on PlanetLab [B+04] today. Longer-term, as we consider later in this chap-

ter, we envision that this free service could evolve into a competitive commercial market in DHT

service.

Figure 5.1 shows the high-level architecture of OpenDHT. Infrastructure nodes run the

OpenDHT server code. Clients are nodesoutsidethe set of infrastructure nodes; they run application

code that invokes the OpenDHT service using RPC. Besides participating inthe DHT’s routing and

storage, each OpenDHT node also acts as agatewaythrough which it accepts RPCs from clients.

77

OpenDHTClient

Client

Client

Puts/Gets

RPC

Client

Application

Figure 5.1: OpenDHT Architecture.

Because OpenDHT operates on a set of infrastructure nodes, no application need concern

itself with DHT deployment, but neither can it run application-specific code onthese infrastructure

nodes. This is quite different than most other uses of DHTs, in which the DHT code is invoked

as a library on each of the nodes running the application. The library approach is very flexible, as

one can put application-specific functionality on each of the DHT nodes, but each application must

deploy its own DHT. The service approach adopted by OpenDHT offersthe opposite tradeoff: less

flexibility in return for less deployment burden. OpenDHT provides a home for applications more

suited to this compromise.

The service approach not only offers a different tradeoff; it also poses different design

challenges. Because of its shared nature, building OpenDHT is not the same as merely deploying

an existing DHT implementation on PlanetLab. OpenDHT is shared in two different senses: there

is sharing both among applications and among clients, and each raises a new design problem.

First, for OpenDHT to be shared effectively by many different applications, its interface

must balance the conflicting goals of generality and ease-of-use. Generality is necessary to meet the

needs of a broad spectrum of applications, but the interface should alsobe easy for simple clients

to use. Ease-of-use argues for a fairly simple primitive, while generality (inthe extreme) suggests

giving raw access to the operating system (as is done in PlanetLab).1 It is hard to quantify both ease-

of-use and generality, so we rely on our early experience with OpenDHTapplications to evaluate

our design decisions. Not knowing what applications are likely to emerge, we can only conjecture

about the required degree of generality.

Second, for OpenDHT to be shared by many mutually untrusting clients withouttheir

1One might argue that PlanetLab solves the problems we are posing by providing extreme resource control and a
general interface. But PlanetLab is hard for simple clients to use, in that every application must install software on each
host and ensure its continued operation. For many of the simple applications we describe in Section 5.4.3, this effort
would be inappropriately burdensome.

78

unduly interfering with each other, system resources must be allocated withcare. While ample prior

work has investigated bandwidth and CPU allocation in shared settings, storage allocation has been

studied less thoroughly. In particular, there is a delicate tradeoff betweenfairness and flexibility:

the system shouldn’t unnecessarily restrict the behavior of clients by imposing arbitrary and strict

quotas, but it should also ensure that all clients have access to their fair share of service. Here we

can evaluate prospective designs more quantitatively, and we do so with extensive simulations.

We summarize our solutions to these two design problems in Section 5.1. We then ad-

dress in significantly more detail the OpenDHT interface (Section 5.2) and storage allocation algo-

rithm (Section 5.3). Section 5.4 describes our early deployment experience, both in terms of raw

performance and availability numbers, and the variety of applications currently using the system.

Section 5.5 concludes with a discussion of various economic concerns thatmay affect the design

and deployment of services like OpenDHT.

5.1 Overview of Design

Before delving into the details of OpenDHT in subsequent sections, we first describe the

fundamental rationale for the designs we chose for the system’s interfaceand storage allocation

mechanism.

5.1.1 Interface

In designing OpenDHT, we have the conflicting goals of generality and ease-of-use (which

we also refer to as simplicity). There are three broad classes of interfaces in the DHT literature, and

they each occupy very different places on the generality/simplicity spectrum (a slightly different

taxonomy is described in [DZD+03]). Given a key, these interfaces provide three very different

capabilities:

routing Provides general access to the DHT node responsible for the input key, and to each node

along the DHT routing path.

lookup Provides general access to the DHT node responsible for the input key.

storage Directly supports the put(key, value) and get(key) operations by routingthem to the DHT

node responsible for the input key, but exposes no other interface.

Therouting model is the most general interface of the three; a client is allowed to invoke

arbitrary code at the endpoint and at every node along the DHT path towards that endpoint (either

79

through upcalls or iterative routing). This interface has been useful in implementing DHT-based

multicast [CDK+03a] and anycast [ZHS+04].

The lookupmodel is somewhat less general, only allowing code invocation on the end-

point. This has been used for query processing [HHL+03], file systems [DKK+01,MMGC02], and

packet forwarding [SAZ+02].

The true power of the routing and lookup interfaces lies in the application-specific code

running on the DHT nodes. While the DHT provides routing to the appropriatenodes, it is the

application-specific code that does the real work, either at each hop enroute (routing) or only at the

destination (lookup). For example, such code can handle forwarding ofpackets (e.g., multicast and

i3 [SAZ+02]) or data processing (e.g., query processing).

Thestoragemodel is by far the least flexible, allowing no access to application-specific

code and only providing the put/get primitives. This lack of flexibility greatly limits the spectrum

of applications it can support, but in return this interface has two advantages: it is simple for the

service to support, in that the DHT infrastructure need not deal with the vagaries of application-

specific code running on each of its nodes, and it is also simple for application developers and

deployers to use, freeing them from the burden of operating a DHT whenall they want is a simple

put/get interface.

In the design of OpenDHT, we place a high premium on simplicity. We want an infras-

tructure that is simple to operate, and a service that simple clients can use. Thus the storage model,

with its simple put/get interface, seems most appropriate. To get around its limited functionality,

we use a novel client library, Recursive Distributed Rendezvous (ReDiR), which we describe in

detail in Section 5.2.2. ReDiR, in conjunction with OpenDHT, provides the equivalent of a lookup

interface for any arbitrary set of machines (inside or outside OpenDHT itself). Thus clients using

ReDiR achieve the flexibility of the lookup interface, albeit with a small loss of efficiency (which

we describe later).

Our design choice reflects our priorities, but one can certainly imagine other choices. For

instance, one could run a shared DHT on PlanetLab, with the DHT providingthe routing service

and PlanetLab allowing developers to run application-specific code on individual nodes. This would

relieve these developers of operating the DHT, and still provide them with allthe flexibility of the

routing interface, but require careful management of the application-specific code introduced on

the various PlanetLab nodes. We hope others explore this portion of the design space, but we are

primarily interested in facilitating simple clients with a simple infrastructure, and so wechose a

different design.

80

While there are no cut-and-dried metrics for simplicity and generality, early evidence

suggests we have navigated the tradeoff between the two well. As we describe in greater detail in

Section 5.4.1, OpenDHT is highly robust, and we firmly believe that the relativesimplicity of the

system has been essential to achieving such robustness. While generalityis similarly difficult to

assess, in Table 5.4 we offer a catalog of the diverse applications built onOpenDHT as evidence of

the system’s broad utility.

5.1.2 Storage Allocation

OpenDHT is essentially a public storage facility. As observed in [RH03,BMP03], if such

a system offers the persistent storage semantics typical of traditional file systems, the system will

eventually fill up with orphaned data. Garbage collection of this unwanted data seems difficult to do

efficiently. To frame the discussion, we consider the solution to this problem proposed as part of the

Palimpsest shared public storage system [RH03]. Palimpsest uses a novel revolving-door technique

in which, when the disk is full, new stores push out the old. To keep their datain the system, clients

re-put frequently enough so that it is never flushed; the required re-put rate depends on the total

offered load on that storage node. Palimpsest uses per-put charging, which in this model becomes

an elegantly simple form of congestion pricing to provide fairness between users (those willing to

pay more get more).

While we agree with the basic premise that public storage facilities should not provide

unboundedly persistent storage, we are reluctant to require clients to monitor the current offered

load in order to know how often to re-put their data. This adaptive monitoringis complicated and

requires that clients run continuously. In addition, Palimpsest relies on charging to enforce some

degree of fairness; since OpenDHT is currently deployed in an environment where such charging is

both impractical and impolitic, we wanted a way to achieve fairness without an explicit economic

incentive.

Our goals for the OpenDHT storage allocation algorithm are as follows. First, to simplify

life for its clients, OpenDHT should offer storage with a definite time-to-live (TTL). A client should

know exactly when it must re-store its puts in order to keep them stored, so rather than adapting (as

in Palimpsest), the client can merely set simple timers or forget its data altogether (if, for instance,

the application’s need for the data will expire before the data itself).

Second, the allocation of storage across clients should be “fair” without invoking explicit

81

charging. By fair we mean that, upon overload, each client has “equal” access to storage.2 Moreover,

we also mean fair in the work-conserving sense; OpenDHT should allow for full utilization of the

storage available (thereby precluding quota-like policies), and should restrict clientsonlywhen it is

overloaded.

Finally, OpenDHT should preventstarvationby ensuring a minimal rate at which puts

can be accepted at all times. Without such a requirement, the system could allocate all its storage

(fairly) for an arbitrarily long TTL, and then reject all storage requestsfor the duration of that TTL.

Such “bursty” availability of storage would present an undue burden onOpenDHT clients.

In Section 5.3 we present an algorithm that meets the above goals.

The preceding was an overview of our design. We next consider the details of the

OpenDHT client interface, and thereafter, the details of storage allocationin OpenDHT.

5.2 Interface

One challenge to providing a shared DHT infrastructure is designing an interface that

satisfies the needs of a sufficient variety of applications to justify the shared deployment. OpenDHT

addresses this challenge two ways. First, a put/get interface makes writing simple applications easy

yet still supports a broad range of storage applications. Second, the use of a client-side library called

ReDiR allows more sophisticated interfaces to be built atop the base put/get interface. In this section

we discuss the design of these interfaces. Section 5.4 presents their performance and use.

5.2.1 The put/get API

The OpenDHT put/get interface supports a range of application needs, from storage in the

style of the Cooperative File System (CFS) [DKK+01] to naming and rendezvous in the style of the

Host Identity Protocol (HIP) [MNJH04] and instant messaging.

The design goals behind the put/get interface are as follows. First, simple OpenDHT

applications should be simple to write. The value of a shared DHT rests in largepart on how easy

it is to use. OpenDHT can be accessed using either Sun RPC over TCP or XML RPC over HTTP;

as such it easy to use from most programming languages and works from behind most firewalls and

NATs. A Python program that reads a key and value from the console and puts them into the DHT

2As in fair queuing, we can of course impose weighted fairness, where some clients receive a larger share of storage
than others, for policy or contractual reasons. We do not pursue this idea here, but it would require only minor changes
to our allocation mechanism.

82

is only nine lines long; the complementary get program is only eleven.

Second, OpenDHT should not restrict key choice. Previous schemes for authentication

of values stored in a DHT require a particular relationship between the valueand the key under

which it is stored (e.g., [DKK+01, DR01]). Already we know of applications that have key choice

requirements that are incompatible with such restrictions; the prefix hash tree(PHT) [RRHS04,

CRR+05] is one example. It would be unwise to impose similar restrictions on future applications.

Third, OpenDHT should provide authentication for clients that need it. A client may wish

to verify that an authorized entity wrote a value under a particular key or to protect its own values

from overwriting by other clients. As we describe below, certain attacks cannot be prevented without

support for authentication in the DHT. Of course, our simplicity goal demands that authentication

be only an option, not a requirement.

The current OpenDHT deployment meets the first two of these design goals(simplicity

and key choice) and has some support for the third (authentication). In what follows, we describe the

current interface in detail, then describe two planned interfaces that better support authentication.

Table 5.1 summarizes all three interfaces. Throughout, we refer to OpenDHT keys byk; these are

160-bit values, often the output of the SHA-1 hash function (denoted byH), though applications

may assign keys in whatever fashion they choose. Values, denotedv, are variable-length, up to a

maximum of 1 kB in size. All values are stored for a bounded time period only; aclient specifies

this period either as a TTL or an expiration time, depending on the interface.

Finally, we note that under all three interfaces, OpenDHT provides only eventual consis-

tency. In the case of network partitions or excessive churn, the systemmay fail to return values that

have been put or continue to return values that have been removed. Imperfect clock synchronization

in the DHT may also cause values to expire at some replicas before others, leaving small windows

where replicas return different results. While such temporary inconsistencies in theory limit the set

of applications that can be built on OpenDHT, they have not been a problem to date.

The Current Interface

A put in OpenDHT is uniquely identified by the triple of a key, a value, and the SHA-

1 hash of a client-chosen random secret up to 40 bytes in length. If multiple puts have the same

key and/or value, all are stored by the DHT. A put with the same key, value,and secret hash as an

existing put refreshes its TTL. A get takes a key and returns all values stored under that key, along

with their associated secret hashes and remaining TTLs. An iterator interface is provided in case

83

Procedure Functionality
put(k,v,H(s), t) Write (k,v) for TTL t;

can be removed with secrets
get(k) returns{(v,H(s), t)} Read allv stored underk;

returned value(s) unauthenticated
remove(k,H(v),s, t) Remove(k,v) put with secrets;

t > than TTL remaining for put

put-immut(k,v, t) Write (k,v) for TTL t;
immutable(k = H(v))

get-immut(k) returns(v, t) Readv stored underk;
returned value immutable

put-auth(k,v,n, t,KP,σ) Write (k,v), expires att;
public keyKP; private keyKS;
can be removed using noncen;
σ = {H(k,v,n, t)}KS

get-auth(k,H(KP)) returns{(v,n, t,σ)} Readv stored under(k,H(KP));
returned value authenticated

remove-auth(k,H(v),n, t,KP,σ) Remove(k,v) with noncen;
parameters as forput-auth

Table 5.1: The put/get interface.H(x) is the SHA-1 hash ofx.

84

there are many such values.

To remove a value, a client reveals the secret whose hash was providedin the put. A put

with an empty secret hash cannot be removed. As discussed in Chapter 4,OpenDHT stores removes

like puts, but a DHT node discards a put(k,v,H(s)) for which it has a corresponding remove. To

prevent the DHT’s replication algorithms from recovering this put when theremove’s TTL expires,

clients must ensure that the TTL on a remove is longer than the TTL remaining onthe corresponding

put. Once revealed in a remove, a secret should not be reused in subsequent puts. To allow other

clients to remove a put, a client may include the encrypted secret as part of the put’s value.

To change a value in the DHT, a client simply removes the old value and puts a new one.

In the case where multiple clients perform this operation concurrently, several new values may end

up stored in the DHT. In such cases, any client may apply an application-specific conflict resolution

procedure to decide which of the new values to remove. So long as this procedure is a total ordering

of the possible input values, it does not matter which client performs the removes (or even if they

all do); the DHT will store the same value in the end in all cases. This approach is similar to that

used by Bayou [PST+97] to achieve eventual consistency.

Since OpenDHT stores all values put under a single key, puts are robust againstsquatting,

in that there is no race to put first under a valuable key (e.g.,H(“coca-cola.com”)). To allow others

to authenticate their puts, clients may digitally sign the values they put into the DHT. In the current

OpenDHT interface, however, such values remain vulnerable to a denial-of-service attack we term

drowning: a malicious client may put a vast number of values under a key, all of whichwill be

stored, and thereby force other clients to retrieve a vast number of suchchaff values in the process

of retrieving legitimate ones.

Planned Interfaces

Although the current put/get interface suffices for the applications built on OpenDHT

today, we expect that as the system gains popularity developers will valueprotection against the

drowning attack. Since this attack relies on forcing legitimate clients to sort through chaff values

put into the DHT by malicious ones, it can only be thwarted if the DHT can recognize and reject

such chaff. The two interfaces below present two different ways forthe DHT to perform such access

control.

Immutable puts: One authenticated interface we plan to add to OpenDHT is the immutable

put/get interface used in CFS [DKK+01] and Pond [REG+03], for which the DHT only allows

85

puts wherek = H(v). Clearly, such puts are robust against squatting and drowning. Immutableputs

will not be removable; they will only expire. The main limitation of this model is that it restricts an

application’s ability to choose keys.

Signed puts: The second authenticated interface we plan to add to OpenDHT is one wherevalues

put are certified by a particular public key, as used for root blocks in CFS. In these puts, a client em-

ploys a public/private key pair, denotedKP andKS, respectively. We callH(KP) theauthenticator.

In addition to a key and value, each put includes: a noncen that can be used to remove

the value later; an expiration timet in seconds since the epoch;KP itself; andσ = {H(k,v,n, t)}KS,

where{X}KS denotes the digital signing ofX with KS. OpenDHT checks that the digital signature

verifies usingKP; if not, the put is rejected. This invariant ensures that the client that senta put

knowsKS.

A get for an authenticated put specifiesboth kandH(KP), and returns only those values

stored that match bothk andH(KP). In other words, OpenDHT only returns values signed by the

private key matching the public key whose hash is in the get request. Clients may thus protect

themselves against the drowning attack by telling the DHT to return only values signed by an entity

they trust.

To remove an authenticated put with(k,v,n), a client issues a remove request with

(k,H(v),n). As with the current interface, clients must take care that a remove expiresafter the

corresponding put. To re-put a removed value, a client may use a new noncen′ 6= n.

We use expiration times rather than TTLs to prevent expired puts from beingreplayed

by malicious clients. As with the current interface, puts with the same key and authenticator but

different values will all be stored by the DHT, and a new put with the same key, authenticator, value,

and nonce as an existing put refreshes its TTL.

Authenticated puts in OpenDHT are similar to those used for public-key blocksin CFS

[DKK +01], for sfrtags in SFR [WBS04], forfileIds in PAST [DR01], and for AGUIDs in Pond

[REG+03]. Like SFR and PAST, OpenDHT allows multiple data items to be stored using thesame

public key. Unlike CFS, SFR, and PAST, OpenDHT gives applications totalfreedom over key

choice (a particular requirement in a generic DHT service).

5.2.2 ReDiR

While the put/get interface is simple and useful, it cannot meet the needs of allapplica-

tions. Another popular DHT interface islookup, which is summarized in Table 5.2. In this interface,

86

Procedure Functionality
join(host, id, namespace) adds (host, id) to the list of hosts

providing functionality ofnamespace
lookup(key, namespace) returns (host, id) in namespace

whoseid most immediately followskey

Table 5.2: The lookup interface provided using ReDiR.

nodes that wish to provide some service—packet forwarding, for example—join a DHT dedicated

to that service. In joining, each node is associated with an identifierid chosen from akey space,

generally[0 : 2160). To find a service node, a client performs a lookup, which takes a key chosen

from the identifier space and returns the node whose identifier most immediatelyfollows the key;

lookup is thus said to implement the successor relation.

For example, ini3 [SAZ+02], service nodes provide a packet forwarding functionality to

clients. Clients create (key, destination) pairs called triggers, where the destination is either another

key or an IP address and port. A trigger(k,d) is stored on the service node returned bylookup(k),

and this service node forwards all packets it receives for keyk to d. Assuming, for example, that

the nodesA throughF in Figure 5.2 arei3 forwarding nodes, a trigger with keyB≤ k < C would

be managed by service nodeC.

The difficulty with lookup for a DHT service is the functionality implemented by those

nodes returned by the lookup function. Rather than install application-specific functionality into

the service, thereby certainly increasing its complexity and possibly reducing its robustness, we

prefer that such functionality be supported outside the DHT, while leveraging the DHT itself to

perform lookups. OpenDHT accomplishes this separation through the useof a client-side library

called ReDiR. (An alternative approach, where application-specific code may only be placed on

subsets of nodeswithin the DHT, is described in [KR04].) By using the ReDiR library, clients can

use OpenDHT to route by key among these application-specific nodes. However, because ReDiR

interacts with OpenDHT only through the put/get API, the OpenDHT server-side implementation

retains the simplicity of the put/get interface.

A DHT supporting multiple separate applications must distinguish them somehow;

ReDiR identifies each application by an arbitrary identifier, called itsnamespace. Client nodes

providing application-specific functionality join a namespace, and other clients performing lookups

do so within a namespace. A ReDiR lookup on identifierk in namespacen returns the node that has

joinedn whose identifier most immediately followsk.

87

E

Level 0

Level 1

Level 2

Level 3

Client keys

Client addresses A B D F

B

C

C F

C E F

C D E

A B

A

D E

Figure 5.2: An example ReDiR tree with branching factor b= 2. Each tree node is shown as a
contiguous line representing the portion of the key space covered by the node. Each node is further
subdivided into two intervals separated by a tick. The names of registered application hosts (A
throughF) are shown above the tree nodes at which they would be stored.

A simple implementation of lookup could be achieved by storing the IP addressesand

ports of all nodes that have joined a namespacen under keyn; lookups could then be performed by

getting all the nodes under keyn and searching for the successor to the key looked up. This imple-

mentation, however, scales linearly in the number of nodes that join. To implement lookup more

efficiently, ReDiR builds a two-dimensional quad-tree of the nodes that have joined and embeds it

in OpenDHT using the put/get interface.3 Using this tree, ReDiR performs lookup in a logarithmic

number of get operations with high probability, and by estimating the tree’s height based on past

lookups, it reduces the average lookup to a constant number of gets, assuming client IDs are chosen

uniformly at random.

The details are as follows: each tree node is list of (IP, port) pairs for a subset of the

clients that have joined the namespace. An example embedding is shown in Figure 5.2. Each node

in the tree has alevel, where the root is at level 0, its immediate children are at level 1, etc. Given

a branching factor ofb, there are thus at mostbi nodes at leveli. We label the nodes at any level

from left to right, such that a pair(i, j) uniquely identifies thejth node from the left at leveli,

and 0≤ j < bi . This tree is then embedded in OpenDHT node by node, by putting the value(s) of

node(i, j) at keyH(ns, i, j). The root of the tree for thei3 application, for example, is stored at

H(“i3” ,0,0). Finally, we associate with each node(i, j) in the treeb intervals of the DHT keyspace
[

2160b−i(j + b′
b), 2160b−i(j + b′+1

b)
)

for 0≤ b′ < b.

We sketch the registration process here. DefineI(`,k) to be the (unique) interval at level`

that encloses keyk. Starting at some level̀startthat we define later, a client with identifiervi does

3The implementation of ReDiR we describe here is an improvement on our previous algorithm [KRRS04], which
used a fixed tree height.

88

an OpenDHT get to obtain the contents of the node associated withI(`start,vi). If after addingvi

to the list of(IP, port) pairs,vi is now the numerically lowest or highest among the keys stored in

that node, the client continues up the tree towards the root, getting the contents and performing an

OpenDHT put in the nodes associated with each intervalI(`start−1,vi), I(`start−2,vi), . . ., until

it reaches either the root (level 0) or a level at whichvi is not the lowest or highest in the interval.

The idea is that there is one interval for each of a node’s children, and the ith interval of a node

contains only the highest and lowest entries of the entireith child.

After walking up the tree in this manner, the client also walks down the tree through

the tree nodes associated with the intervalsI(`start,vi), I(`start+1,vi), . . ., at each step getting the

current contents, and putting its address ifvi is the lowest or highest in the interval. The downward

walk ends when it reaches a level in which it is the only client in the interval. Finally, since all state

is soft (with TTLs of 60 seconds in our tests), the entire registration process is repeated periodically

until the client leaves the system.

A lookup (ns,k) is similar. We again start at some level` = `start. At each step we get

the current intervalI(`,k) and determine where to look next as follows:

1. If there is no successor ofvi stored in the tree node associated withI(`,k), then its successor

must occur in a larger range of the keyspace, so we set`← `−1 and repeat, or fail if̀ = 0.

2. If k is sandwiched between two client entries inI(`,k), then the successor must lie somewhere

in I(`,k). We set̀ ← `+1 and repeat.

3. Otherwise, there is a clients stored in the node associated withI(`,k) whose identifiervs

succeedsk, and there are no clients with IDs betweenk andvs. Thus,vs must be the successor

of k, and the lookup is done.

A key point in our design is the choice of starting level`start. Initially `start is set to a

hard-coded constant (2 in our implementation). Thereafter, for registrations, clients takèstartto be

the lowest level at which registration last completed. For lookups, clients record the levels at which

the last 16 lookups completed and take`startto be the mode of those depths. This technique allows

us to adapt to any number of client nodes while usually hitting the correct depth (Case 3 above) on

the first try.

We present a performance analysis of ReDiR on PlanetLab in Section 5.4.2.

89

5.3 Storage Allocation

In Section 5.1.2, we presented our design goals for the OpenDHT storageallocation al-

gorithm: that it provide storage with a definite time-to-live (TTL), that it allocatethat storage fairly

between clients and with high utilization, and that it avoid long periods in which nospace is avail-

able for new storage requests. In this section we describe an algorithm, Fair Space-Time (FST), that

meets these design goals. Before doing so, though, we first consider twochoices we made while

defining the storage allocation problem.

First, in this initial incarnation of OpenDHT, we equate “client” with an IP address (spoof-

ing is prevented by TCP’s three-way handshake). This technique is clearly imperfect: clients behind

the same NAT or firewall compete with each other for storage, mobile clients canacquire more stor-

age than others, and some clients (e.g., those that own class A address spaces) can acquire virtually

unlimited storage. To remedy this situation, we could clearly use a more sophisticated notion of

client (person, organization, etc.) and require each put to be authenticated at the gateway. However,

to be completely secure against the Sybil attack [Dou02], this change wouldrequire formal identity

allocation policies and mechanisms. In order to make early use of OpenDHT aseasy as possible,

and to prevent administrative hassles for ourselves, we chose to start with the much more primitive

per-IP-address allocation model, and we hope to improve on it in the future.More generally, we

discuss in Section 5.5 how our current free service could transition to a competitive commercial

market in DHT service.

Second, OpenDHT is a large distributed system, and at first one might think that a fair

allocation mechanism should consider the global behavior of every client (i.e., all of their puts).

While tracking global behavior in this way presents a daunting problem, it is also the case that the

capacity constraints of OpenDHT are per-node, in the form of finite disk capacities, so the situation

is even more complicated.4

We note that OpenDHT cannot avoid providing some notion of per-disk fairness in allo-

cation. For example, a common use of the system is for rendezvous, wherea group of cooperating

clients discover each other by putting their identities under a common key,k. With a strictly global

model of fairness, a malicious client could disrupt this rendezvous by fillingthe disk onto whichk

is mapped, so long as it remained below its globally fair allocation. A per-disk model of fairness, in

contrast, promises each client a fair allocation of every disk in the system, preventing such attacks.

4We assume that DHT load-balancing algorithms operate on longer time scales than bursty storage overloads, so their
operation is orthogonal to the concerns we discuss here. Thus, in the ensuing discussion we assume that the key-to-node
mapping in the DHT is constant during the allocation process.

90

Furthermore, the per-disk model rewards socially responsible behavioron the part of

clients. Applications that are flexible in their key choice—the PAST storage system [DR01], for

example—can target their puts towards otherwise underutilized nodes, thereby balancing the load

on the DHT while acquiring more storage for themselves. By protecting applications that cannot

choose their keys while rewarding those that can, the per-disk model reduces the need for later load

balancing by the DHT itself.

For the above reasons, we have implemented per-disk fairness in OpenDHT, and we leave

the study of global fairness to future work. Still, per-disk fairness is notas easy to implement as it

sounds. Our storage interface involves both an amount of data (the size of the put in bytes) and a

duration (the TTL). As we show below, we can use an approach inspiredby fair queuing [DKS89]

to allocate storage, but the two-dimensional nature of our storage requires substantial extensions

beyond the original fair queuing model.

We now turn to describing the algorithmic components of FST. First we describe how to

achieve high utilization for storage requests of varied sizes and TTLs whilepreventing starvation.

Next, we introduce the mechanism by which we fairly divide storage betweenclients. Finally, we

present an evaluation of the FST algorithm in simulation.

5.3.1 Preventing Starvation

An OpenDHT node prevents starvation by ensuring a minimal rate at which puts can be

accepted at all times. Without such a requirement, OpenDHT could allocate allits storage (fairly)

for an arbitrarily large TTL, and then reject all storage requests for theduration of that TTL. To

avoid such situations, we first limit all TTLs to be less thanT seconds and all puts to be no larger

thanB bytes. We then require that each OpenDHT node be able to accept at the ratermin = C/T,

whereC is the capacity of the disk. We could choose a less aggressive starvation criterion, one with

a smallerrmin, but we are presenting the most challenging case here. (It is also possible to imagine

a reserved rate for future puts that is not constant over time—e.g., we could reserve a higher rate for

the near future to accommodate bursts in usage—but as this change would significantly complicate

our implementation, we leave it for future work.)

When considering a new put, FST must determine if accepting it will interfere withthe

node’s ability to accept sufficiently many later puts. We illustrate this point with theexample in

Figure 5.3, which plots committed disk space versus time. The ratermin reserved for future puts is

represented by the dashed line (which has slopermin). Consider two submitted puts, a large one (in

91

minmin

now

C

0

sum

put
potential

(a) (b)

future puts
(slope=r

potential
put

sum

now

C

0

future puts

now+max_ttl time now+max_ttl time

space space

))(slope=r

Figure 5.3:Preventing starvation.

terms of the number of bytes) with a short TTL in Figure 5.3(a) and a small onewith a long TTL

in Figure 5.3(b). The requirement that these puts not endanger the reserved minimum rate (rmin)

for future puts is graphically equivalent to checking whether the sum of the liney = rminx and the

top edge of the puts does not exceed the storage capacityC at any future time. We can see that the

large-but-short proposed put violates the condition, whereas the small-but-long proposed put does

not.

Given this graphical intuition, we derive a formal admission control test for our allocation

scheme. LetB(t) be the number of bytes stored in the system at timet, and letD(t1, t2) be the

number of bytes that free up in the interval[t1, t2) due to expiring TTLs. For any point in time,

call it tnow, we can compute as follows the total number of bytes,f (τ), stored in the system at time

tnow+ τ assuming that new puts continue to be stored at a minimum ratermin:

f (τ) = B(tnow)−D(tnow, tnow+ τ)+ rmin× τ

The first two terms represent the currently committed storage that will still be ondisk at timetnow+τ.

The third term is the minimal amount of storage that we want to ensure can be accepted between

tnow andtnow+ τ.

Consider a new put with sizex and TTL` that arrives at timetnow. The put can be accepted

if and only if the following condition holds for all 0≤ τ≤ `:

f (τ)+x≤C. (5.1)

92

If the put is accepted, the functionf (τ) is updated. As we show in Appendix A, this update can be

done in time logarithmic in the number of puts accepted by tracking the inflection points of f (τ)

using a balanced tree.

5.3.2 Fair Allocation

The admission control test only prevents starvation. We now address the problem of fair

allocation of storage among competing clients. There are two questions we mustanswer in this

regard: how do we measure the resources consumed by a client, and what is the fair allocation

granularity?

To answer the first question, we note that a put in OpenDHT has both a sizeand a TTL;

i.e., it consumes not just storage itself, but storage over a given time period. The resource consumed

by a put is then naturally measured by the product of its size (in bytes) and itsTTL. In other words,

for the purposes of fairness in OpenDHT, a put of 1 byte with a TTL of 100 seconds is equivalent

to a put of 100 bytes with a TTL of 1 second. We call the product of the put’s size and its TTL its

commitment.

A straightforward strawman algorithm to achieve fairness would be to track the total com-

mitments made to each client so far, and accept puts from clients with the smallest total commit-

ments. Unfortunately, this policy can lead to per-client starvation. To illustratethis point, assume

that clientA fills the disk in an otherwise quiescent system. Once the disk is full, clientB begins

putting its own data.B will not starve, as the admission control test guarantees that the node canstill

accept data at a rate of at leastrmin, butA will starve because this strawman algorithm favors client

B until it reaches the same level of total commitments granted to clientA. This period of starvation

could be as long as the maximum TTL,T.

To prevent such per-client starvation, we aim to equalize therateof commitments (instead

of the total commitments) of clients that contend for storage. Thus, the servicethat a client receives

depends only on the competing clients at that instant of time, and not on how many commitments it

was granted in the past. This strategy emulates the well knownfair queuingalgorithm that aims to

provide instantaneous fairness, i.e., allocate a link capacity equally among competing flows at every

instant of time.

In fact, our FST algorithm borrows substantially from the start-time fair queuing (SFQ)

algorithm [GVC96]. FST maintains a system virtual timev(t) that roughly represents the total

commitments that a continuously active client would receive by timet. By “continuously active

93

client” we mean a client that contends for storage at every point in time. Letpi
c denote thei-th put

of client c. Then, like SFQ, FST associates with each putpi
c a start timeS(pi

c) and a finish time

F(pi
c). The start time ofpi

c is

S(pi
c) = max(v(A(pi

c))−α,F(pi−1
c),0). (5.2)

A(pi
c) is the arrival time ofpi

c, andα is a non-negative constant described below. The finish time of

pi
c is

F(pi
c) = S(pi

c)+size(pi
c)× ttl(pi

c).

As with the design of any fair queuing algorithm, the key decision in FST is how to

compute the system virtual time,v(t). With SFQ the system virtual time is computed as the start time

of the packet currently being transmitted (served). Unfortunately, in the case of FST the equivalent

concept ofthe put currently being served is not well-defined since there are typically many puts

stored in the system at any timet. To avoid this problem, FST computes the system virtual timev(t)

as the maximum start time of all puts accepted before timet.

We now briefly describe how the fairness algorithm works in conjunction with the ad-

mission control test. Each node maintains a bounded-size queue for each client with puts currently

pending. When a new put arrives, if the client’s queue is full, the put is rejected. Otherwise, the

node computes its start time and enqueues it. Then the node selects the put with the lowest start

time, breaking ties arbitrarily. Using the admission control test (Eqn. 5.1) the node checks whether

it can accept this put right away. If so, the node accepts it and the process is repeated for the put

with the next-lowest start time. Otherwise, the node sleeps until it can acceptthe pending put.

If another put arrives, the node awakes and repeats this computation. If the new put has

the smallest start time of all queued puts it will preempt puts that arrived before it. This preemption

is particularly important for clients that only put rarely—well below their fair rate. In such cases,

the max function in Equation 5.2 is dominated by the first argument, and theα term allows the client

to preempt puts from clients that are at or above their fair rate. This technique is commonly used in

fair queuing to provide low latency to low-bandwidth flows [DKS89].

FST can suffer from occasional loss of utilization because of head-of-line blocking in the

put queue. However, this blocking can only be of durationx/rmin, wherex is the maximal put size,

so the loss of utilization is quite small. In particular, in all of our simulations FST achieved full

utilization of the disk.

94

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 1 2 3 4 5 6 7 8 9 10T
ot

al
 B

yt
es

*S
ec

on
ds

 (
M

B
*h

ou
rs

)

Time (hours)

Client 1
Client 2
Client 3
Client 4

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 1 2 3 4 5 6 7 8 9 10

T
ot

al
 S

to
ra

ge
 (

M
B

)

Time (hours)

Client 1
Client 2
Client 3
Client 4

Figure 5.4:Non-starvation.In this experiment, all clients put above their fair rates, but begin putting
at different times.

5.3.3 Evaluation

We evaluate FST according to four metrics: (1)non-starvation, (2) fairness, (3) utiliza-

tion, and (4)queuing latency. We use different maximum TTL valuesT in our tests, butrmin is

always 1,000 bytes per second. The maximum put sizeB is 1 kB. The maximum queue size andα

are both set toBT.

For ease of evaluation and to avoid needlessly stressing PlanetLab, we simulate our algo-

rithm using an event-driven simulator run on a local machine. This simulator tracks relevant features

of an OpenDHT node’s storage layer, but does not model any networklatency or bandwidth. The

interval between two puts for each client follows a Gaussian distribution with astandard deviation

of 0.1 times the mean. Clients do not retry rejected puts.

Our first experiment shows that FST prevents starvation when clients start putting at dif-

ferent times. In this experiment, the maximum TTL is three hours, giving a disk size of 10.3 MB

(3×3,600×1,000 bytes). Each client submits 1,000-byte, maximum-TTL puts at a rate ofrmin.

The first client starts putting at time zero, and the subsequent clients start putting two hours apart

each. The results of the experiment are shown in Figure 5.4. The left-hand graph shows the cumu-

lative commitments granted to each client, and the right-hand graph shows the storage allocated to

each client over time.

Early in the experiment, Client 1 is the only active client, and it quickly acquiresnew

storage. When Client 2 joins two hours later, the two share the available put rate. After three hours,

Client 1 continues to have puts accepted (at 0.5rmin), but its existing puts begin to expire, and its on-

disk storage decreases. The important point to note here is that Client 1 is not penalized for its past

commitments; its puts are still accepted at the same rate as the puts of the Client 2. While Client 1

95

Test 1 Test 2 Test 3
Client Size TTL Bid 50th 90th Avg Bid 50th 90th Avg Bid 50th 90th Avg

1 1000 60 1.0 0 974 176 2.0 5222 10851 5126 3.0 6605 12949 6482
2 1000 30 1.0 0 0 9 2.0 7248 11554 6467 3.0 7840 13561 7364
3 1000 12 1.0 0 0 9 2.0 8404 12061 7363 3.0 8612 14173 8070
4 500 60 1.0 0 409 56 2.0 7267 11551 6490 3.0 7750 13413 7368
5 200 60 1.0 0 0 13 2.0 8371 12081 7349 3.0 8566 14125 8035
6 1000 60 1.0 0 861 163 1.0 396 1494 628 1.0 446 2088 933
7 1000 30 1.0 0 0 12 1.0 237 1097 561 1.0 281 1641 872
8 1000 12 1.0 0 0 9 1.0 221 1259 604 1.0 249 1557 940
9 500 60 1.0 0 409 63 1.0 123 926 467 1.0 187 1162 770

10 200 60 1.0 0 0 14 1.0 0 828 394 1.0 6 1822 804
11 1000 60 0.5 0 768 160 0.5 398 1182 475 0.5 444 1285 531
12 1000 30 0.5 0 0 6 0.5 234 931 320 0.5 261 899 328
13 1000 12 0.5 0 0 5 0.5 214 938 306 0.5 235 891 311
14 500 60 0.5 0 288 37 0.5 137 771 226 0.5 171 825 249
15 200 60 0.5 0 0 7 0.5 0 554 103 0.5 0 715 131

Table 5.3:Queuing times in milliseconds for each of the clients in the multiple size and TTL tests.
Sizes are in bytes; TTLs are in minutes. A “bid” of 1.0 indicates that a client is putting often enough
to fill 1/15th of the disk in an otherwise idle system.

has to eventually relinquish some of its storage, the non-starvation propertyof the algorithm allows

it to intelligently choose which data to let expire and which to renew.

As new clients arrive, the put rate is further subdivided. One maximum TTLafter clients

stop arriving, each client is allocated its fair share of the storage availableon disk.

Our second experiment demonstrates fairness and high utilization when clients issue puts

with various sizes and TTLs. In addition, it also shows that clients putting at or below their fair rate

experience only slight queuing delays. The maximum TTL in this experiment is one hour, giving a

disk capacity of 3.4 MB (3,600×1,000 bytes).

We consider three tests, each consisting of 15 clients divided into three groups, as shown

in Table 5.3. All the clients in a group have the same total demand, but have different put frequen-

cies, put sizes, and TTLs; e.g., a client submitting puts with maximum size and halfthe maximum

TTL puts twice as often as a client in the same group submitting puts with the maximum size and

TTL.

The clients in Groups 2 and 3 put at the same rate in each test. The clients in Group

3 are light users. Each of these users demands only 1/30th of the available storage. For example,

Client 11 submits on average one 1,000-byte, maximum-TTL put every 30 seconds. As the fair share

of each client is 1/15th of the disk, the puts of the clients from Group 3 should be always accepted.

96

 0

 120

 240

 360

 480

 600

 720

 0 1 2 3 4 5S
to

ra
ge

 A
cq

ui
re

d
(1

,0
00

s
of

 b
yt

es
)

Time (hours)

Test 1

Clients 1-10

Clients 11-15

 0

 120

 240

 360

 480

 600

 720

 0 1 2 3 4 5S
to

ra
ge

 A
cq

ui
re

d
(1

,0
00

s
of

 b
yt

es
)

Time (hours)

Test 2

Clients 1-5

Clients 6-10

Clients 11-15

 0

 120

 240

 360

 480

 600

 720

 0 1 2 3 4 5S
to

ra
ge

 A
cq

ui
re

d
(1

,0
00

s
of

 b
yt

es
)

Time (hours)

Test 3

Clients 1-5

Clients 6-10

Clients 11-15

Figure 5.5:Fair allocation despite varying put sizes and TTLs.See text for description.

97

The clients in Group 2 are moderate users, putting at exactly their fair share. For example, Client 6

submits on average one 1,000-byte, maximum-TTL put every 15 seconds.

The clients in Group 1 put at a different rate in each test. In Test 1, they put as the same

rate as the clients in Group 2. Since clients in Groups 1 and 2 put at their fair share while the clients

in Group 3 put below their fair share, the system is underutilized in this test. InTests 2 and 3, the

clients of Group 1 put at twice and three times their fair rate, respectively. Thus, in both these tests

the system is overutilized.

Figure 5.5 and Table 5.3 summarize the results for this experiment. Figure 5.5 shows the

storage allocated to each client versus time. As expected, in the long term, every client receives

its fair share of storage. Moreover, clients that submit puts with short TTLs acquire storage more

quickly than other clients when the disk is not full yet. This effect is illustratedby the steep slopes

of the lines representing the allocations of some clients at the beginning of each test. This behavior

demonstrates the benefit of using the admission control test to rate-limit new put requests: looking

back at Figure 5.3, one can see that many puts with short TTLs can be accepted in a mostly-empty

disk without pushing the value off (τ) overC.

Table 5.3 shows the queuing delays experienced by each client. This delayis the time a

put waits from the moment it arrives at the node until it is accepted. There are three points worth

noting. First, as long as the system is underutilized every client experiences very low queuing

delays. This point is illustrated by Test 1.

Second, even when the system is overutilized, the clients that issue puts at below or at

their fair rate experience low queuing delays. For example, the clients in Group 3 (i.e., Clients 11-

15) that issue puts below their fair rate experience average queuing delays of at most 531 ms, while

the clients in Group 2 (i.e., Clients 6-10) that issue puts at their fair rate experience average queuing

delays no larger than 1 second. One reason clients in Group 3 experience lower queuing delays than

clients in Group 2 is the use of parameterα in the computation of the start times (Eqn. 5.2). Since

clients in Group 3 have fewer puts stored than those in Group 2, there are simply more cases when

the start times of puts of clients in Group 3 are computed based on the system virtual time (i.e.,

v(·)−α) rather than on the finish times of the previous puts.

Third, clients that are above the fair rate must wait their turn more often, andthus experi-

ence higher, but not unreasonable, queuing delays.

98

5.4 Deployment and Evaluation

In this section we evaluate both the performance and the usability of OpenDHT.

OpenDHT’s lookup and storage layers are just Bamboo’s lookup and storage layers de-

scribed in Chapters 3 and 4. As such, in evaluating OpenDHT’s performance in Section 5.4.1, we

do not focus on the detailed behavior of the underlying DHT routing or storage algorithms, both of

which have been evaluated over short periods elsewhere [DLS+04, RGRK04, Cat03]. Rather, we

focus on thelong-runningperformance of OpenDHT in terms of data durability and put/get latency.

Although DHTs are theoretically capable of achieving high durability, we areaware of no previ-

ous long term studies of real (not simulated) deployments that have demonstrated this capability in

practice.

As discussed in Section 5.2.2, the ReDiR library presents applications with a lookup inter-

face. Since each ReDiR lookup is implemented using at least one get operation, a lookup in ReDiR

can be no faster than a get in the underlying DHT. We quantify the performance of ReDiR lookups

on PlanetLab in Section 5.4.2. Thisin situ performance evaluation is both novel (no implementa-

tion of ReDiR was offered or evaluated in [KRRS04]) and essential, as thevalidity of our claim

that OpenDHT can efficiently support operations beyond put/get rests largely on the performance

penalty of ReDiR versus standard lookup and routing interfaces.

Finally, OpenDHT’s usability is best demonstrated by the spectrum of applications it sup-

ports, and we describe our early experience with these in Section 5.4.3.

5.4.1 Long-Running Put/Get Performance

In this section we report on the latency of OpenDHT gets and the durability ofdata stored

in OpenDHT.

Measurement Setup OpenDHT has been deployed on PlanetLab since April 2004, on between

170 and 250 hosts. From August 2004 until February 2005 we continuously assessed the availability

of data in OpenDHT using a synthetic put/get workload.5 In this workload, a client puts one value

into the DHT each second. Value sizes are drawn randomly from{32, 64, 128, 256, 512, 1,024}
bytes, and TTLs are drawn randomly from{1 hour, 1 day, 1 week}. The same client randomly

retrieves these previously put data to assess their availability; each second it randomly selects one

value that should not yet have expired and gets it. If the value cannot beretrieved within an hour, a

5During the PlanetLab Version 3 rollout a kernel bug was introduced that caused a large number of hosts to behave
erratically until it was fixed. We were unable to run OpenDHT during this period.

99

 0.1

 1

 10

 100

 1000

09/28 10/12 10/26 11/09 11/23 12/07 12/21 01/04 01/18 02/01

G
et

 L
at

en
cy

 (
s)

 o
r

F
ai

lu
re

 C
ou

nt

PlanetLab
V3 Rollout

Median Latency
95th Percentile Latency

Failures

Figure 5.6:Long-running performance and availability of OpenDHT. See text for description.

failure is recorded. If the gateway to which the client is connected crashes, it switches to another,

resubmitting any operations that were in flight at the time of the crash.

Results Figure 5.6 shows measurements taken over 3.5 months of running the above workload.

We plot the median and 95th percentile latency of get operations on they axis. The black impulses

on the graph indicate failures. Overall, OpenDHT maintains very high durability of data; over the

3.5 months shown, the put/get test performed over 9 million puts and gets each,and it detected

only 28 lost values. Get latency is underwhelming, though we show it can lowered dramatically in

Chapter 7. Some of our high latency is due to bugs; on February 4 we fixeda bug that was a major

source of the latency “ramps” shown in the graph. On April 22 (not shown) we fixed another and

have not seen such “ramps” since. Other high latencies are caused by Internet connectivity failures;

the three points where the 95th percentile latency exceeds 200 seconds aredue to the gateway being

partially partitioned from the Internet. For example, on January 28, the PlanetLab all-pairs-pings

database [Str] shows that the number of nodes that could reach the gateway dropped from 316 to

147 for 20–40 minutes. The frequency of such failures indicates that they pose a challenge DHT

designers should be working to solve; Chapter 6 describes several techniques we use to mitigate

their effects.

5.4.2 ReDiR Performance

We consider three metrics in evaluating ReDiR performance: (1) latency of lookups, (2)

ReDiR’s bandwidth consumption, and (3) consistency of lookups when theregistered nodes external

to OpenDHT churn. The first two quantify the overhead due to building ReDiR over a put/get

interface, while consistency measures ReDiR’s ability to maintain correctnessdespite its additional

level of indirection relative to DHTs such as Chord or Bamboo.

100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

C
um

ul
at

iv
e

fr
ac

tio
n

Latency (seconds)

OpenDHT gets
ReDiR lookups

Figure 5.7:Latency of ReDiR lookups and OpenDHT gets.

Measurement Setup To evaluate ReDiR we had 4 PlanetLab nodes each runn/4 ReDiR clients

for variousn, with a fifth PlanetLab node performing ReDiR lookups of random keys. Weselected

an OpenDHT gateway for each set of clients running on a particular PlanetLab node by picking 10

random gateways from a list of all OpenDHT gateways, pinging those ten,and connecting to the

one with lowest average RTT. We used a branching factor ofb = 10 in all of our experiments, with

client registration occurring every 30 seconds, and with a TTL of 60 seconds on a client’s(IP, port)

entries in the tree. Each trial lasted 15 minutes.

Results Our first experiment measured performance with a stable set ofn clients, forn∈ {16,32,

64,128,256}. Figure 5.7 shows a CDF of ReDiR lookup latency, based on 5 trials for each n. We

compare to the latency of the OpenDHT gets performed in the process of ReDiR lookups. The

average lookup uses≈ 1.3 gets, indicating that our tree depth estimation heuristic is effective. We

have verified this result in a simple simulator for up to 32,768 clients, the results of which match

our PlanetLab results closely within their common range ofn. Bandwidth use is quite low; even at

the highest churn rate we tested, the average client registration processuses≈ 64 bytes per second

and a single lookup uses≈ 800 bytes.

We next measured consistency as the rate of client churn varies. We used 128 clients with

exponentially distributed lifetimes. Whenever one client died, a new client joined. We use the same

definition of consistency used in Chapter 3; ten lookups were performed simultaneously on the same

key, the majority result (if any) is considered consistent, and all others are inconsistent.

Figure 5.8 plots consistency as a function of median client lifetime. We show the mean

and 95% confidence intervals based on 15 trials. Despite its layer of indirection, ReDiR is compet-

101

 92

 94

 96

 98

 100

 1 2 4 8 16 32
 0

 200

 400

 600

 800

P
er

ce
nt

 C
on

si
st

en
t

B
yt

es

Median session time (min)

Lookup consistency
Bytes per lookup
Bytes/sec/client

Figure 5.8: Percentage of ReDiR lookups that are consistent, bytes transferred perlookup, and
bytes/sec per registration process.

itive with the implementation of Chord evaluated in our earlier work [RGRK04], although Bamboo

performs better at high churn rates (note, however, that the experimentsof [RGRK04] were per-

formed on ModelNet, whereas ours were performed on PlanetLab).

In summary, these results show that lookup can be implemented using a DHT service

with a small increase in latency, with consistency comparable to other DHTs, and with very low

bandwidth.

5.4.3 Applications

We cannot directly quantify the utility of OpenDHT’s interface, so in this section we in-

stead report on our experience with building applications over OpenDHT.We first give an overview

of the various OpenDHT-based applications built by us and by others. Wethen describe one

application—FreeDB Over OpenDHT (FOOD)—in greater detail. FOOD is a DHT-based im-

plementation of FreeDB, the widely deployed public audio-CD indexing service. As FreeDB is

currently supported by a set of replicated servers, studying FOOD allows us to compare the perfor-

mance of the same application built in two very different ways. We end this section with a brief

discussion of common feature requests from application-builders; such requests provide one way to

identify which aspects of OpenDHT matter most during development of real applications.

Generality: Overview of Applications

OpenDHT was opened up for experimentation to “friends and family” in March 2004,

and to the general public in December 2004. Despite its relative infancy, OpenDHT has already

been adopted by a fair number of application developers. To gain experience ourselves, we also

102

Application Organization Uses OpenDHT for . . . put/get or ReDiR Comments

Croquet Media Messenger Croquet replica location put/get http://opencroquet.org/
Delegation Oriented Arch. (DOA) MIT, UCB indexing put/get http://nms.lcs.mit.edu/doa/

Host Identity Protocol (HIP) IETF WG name resolution put/get alternative to DNS-based resolution
Instant Messaging Class Project MIT rendezvous put/get MIT 6.824, Spring 2004

Tetherless Computing Waterloo host mobility put/get http://mindstream.watsmore.net/
Photoshare Jordan Middle School HTTP redirection put/get http://ezshare.org/

Place Lab 802.11 Location System IRS location-based redirection ReDiR http://placelab.org/
and range queries

QStream: Video Streaming UBC multicast tree construction ReDiR http://qstream.org/
RSSDHT: RSS Aggregation SFSU multicast tree construction ReDiR http://sourceforge.net/projects/rssdht/

FOOD: FreeDB Over OpenDHT OpenDHT storage put/get 78 semicolons Perl
Instant Messaging Over OpenDHT OpenDHT rendezvous put/get 123 semicolons C++

i3 Over OpenDHT OpenDHT redirection ReDiR 201 semicolons Java glue between
i3 and ReDiR, passesi3 regr. tests,

http://i3.cs.berkeley.edu/
MOOD: Multicast Over OpenDHT OpenDHT multicast tree construction ReDiR 474 semicolons Java

Table 5.4:Applications built or under development on OpenDHT.

103

developed four different OpenDHT applications. Table 5.4 lists the knownOpenDHT applications.

We make a number of observations:

OpenDHT put/get usage: Table 5.4 shows that the majority of these applications use only

OpenDHT’s put/get interface. We found that many of these (e.g., DOA, FOOD, instant messag-

ing, HIP) make quite trivial use of the DHT—primarily straightforward indexing. Such applications

are a perfect example of the benefit of a shared DHT; their relatively simple needs are trivially met

by the put/get interface, but none of the applications in themselves warrantthe deployment of an

independent DHT.

ReDiR usage: We have four example applications that use ReDiR—two built by us and two by

others. i3 is an indirection-based routing infrastructure built over a DHT lookup interface. To

validate that ReDiR can be easily used to support applications traditionally builtover a lookup

interface, we ported thei3 code to run over OpenDHT. Doing so was extremely easy, requiring only

a simple wrapper that emulatedi3’s Chord implementation and requiringnochange to howi3 itself

is engineered.

As described in Section 4, existing DHT-based multicast systems [CDK+03a, RHKS01,

ZZJ+01] typically use a routing interface. To explore the feasibility of supportingsuch applications,

we implemented and evaluated Multicast Over OpenDHT (MOOD), using a ReDiR-like hierarchy

as suggested in [KRRS04]. (The QStream project has independently produced another multicast

implementation based on a ReDiR-like hierarchy.) MOOD is not a simple port of anexisting im-

plementation, but a wholesale redesign. We conjecture based on this experience that one can often

redesign routing-based applications to be lookup-based atop a DHT service. We believe this is an

area ripe for further research, both in practice and theory.

Finally, the Place Lab project [CRR+05] makes novel use of ReDiR. In Place Lab, a

collection of independently operated servers processes data samples submitted by a large number of

wireless client devices. Place Lab uses ReDiR to “route” an input data sample to the unique server

responsible for processing that sample.

In summary, in the few months since being available to the public, OpenDHT has already

been used by a healthy number of very different applications. Of course, the true test of OpenDHT’s

value will lie in the successful, long-term deployment of such applications; we merely offer our early

experience as an encouraging indication of OpenDHT’s generality and utility.

104

FOOD: FreeDB Over OpenDHT

FreeDB is a networked database of audio CD metadata used by many CD-player appli-

cations. The service indexes over a million CDs, and as of September 2004 was serving over four

million read requests per week across ten widely dispersed mirrors.

A traditional FreeDB query proceeds in two stages over HTTP. First, the client computes

a hash value for a CD—called itsdiscid—and asks the server for a list of CDs with this discid. If

only one CD is returned, the client retrieves the metadata for that CD from theserver and the query

completes. According to our measurements, this situation occurs 91% of the time.In the remaining

cases, the client retrieves the metadata for each CD in the list serially until it finds an appropriate

match.

A single FOOD client puts each CD’s data under its discid. To query FOOD, other clients

simply get all values under a discid. A proxy that translates legacy FreeDBqueries to FOOD queries

is only 78 semicolons of Perl.

Measurement Setup We stored a May 1, 2004 snapshot of the FreeDB database containing a total

of 1.3 million discids in OpenDHT. To compare the availability of data and the latencyof queries

in FreeDB and FOOD, we queried both systems for a random CD every 5 seconds. Our FreeDB

measurements span October 2–13, 2004, and our FOOD measurements span October 5–13.

Results During the measurement interval, FOOD offered availability superior to that of FreeDB.

Only one request out of 27,255 requests to FOOD failed, where each request was tried exactly once,

with a one-hour timeout. This fraction represents a 99.99% success rate, as compared with a 99.9%

success rate for the most reliable FreeDB mirror, and 98.8% for the least reliable one.

In our experiment, we measured both the total latency of FreeDB queries and the latency

of only the first HTTP request within each FreeDB query. We present this last measure as the

response time FreeDB might achieve via a more optimized protocol. We considerFreeDB latencies

only for the most proximal server, the USA mirror. Comparing the full legacyversion of FreeDB

against FOOD, we observe that over 70% of queries complete with lower latency on FOOD than on

FreeDB, and that for the next longest 8% of queries, FOOD and FreeDB offer comparable response

time. For the next 20% of queries, FOOD has less than a factor of two longer-latency than FreeDB.

Only for the slowest 2% of queries does FOOD offer significantly greaterlatency than FreeDB. We

attribute this longer tail to the number of request/response pairs in a FOOD transaction versus in

a FreeDB transaction. Even for the idealized version of FreeDB, in whichqueries complete in a

single HTTP GET, we observe that roughly 38% of queries complete with lower latency on FOOD

105

than on the idealized FreeDB, and that the median 330 ms required for FOOD toretrieve all CDs’

data for a discid is only moderately longer than the median 248 ms required to complete only the

first step of a FreeDB lookup.

In summary, FOOD offers improved availability, with minimal development or deploy-

ment effort, and reduced latency for the majority of queries versus legacy FreeDB.

Common Feature Requests

We now briefly report experience we have gleaned in interactions with users of OpenDHT.

In particular, user feature requests are one way of identifying which aspects of the design of a

shared DHT service matter most during development of real applications. Requests from our users

included:

XML RPC We were surprised at the number of users who requested that OpenDHTgateways

accept requests over XML RPC (rather than our initial offering, Sun RPC). This request in a sense

relates to generality; simple client applications are often written in scripting languages that manip-

ulate text more conveniently than binary data structures, e.g., as is the case inPerl or Python. We

have since added an XML RPC interface to OpenDHT.

Remove function After XML RPC, the ability to remove values before their TTLs expire was the

most commonly requested feature in our early deployment. It was for this reason that we added

remove to the current OpenDHT interface.

Authentication While OpenDHT does not currently support the immutable or signed puts we

proposed in Section 5.2.1, we have had essentially no requests for such authentication from users.

However, we believe this apparent lack of concern for security is most likely due to these applica-

tions being themselves in the relatively early stages of deployment.

Read-modify-write As discussed in Section 5.2.1, OpenDHT currently provides only eventual

consistency. While it is possible to change values in OpenDHT by removing theold value and

putting a new one, such operations can lead to periods of inconsistency. In particular, when

two clients change a value simultaneously, OpenDHT may end up storing both new values. Al-

though this situation can be fixed after the fact using application-specific conflict resolution as

in Bayou [PST+97], an alternate approach would be to add a read-modify-write primitive to

OpenDHT. There has recently been some work in adding such primitives to DHTs using consen-

sus algorithms [MGM05, RL03, LMR02], and we are currently investigatingother primitives for

106

improving the consistency provided by OpenDHT.

Larger maximum value size Purely as a matter of convenience, several users have requested that

OpenDHT support values larger than 1 kB. OpenDHT’s current 1 kB limiton values exists only due

to Bamboo’s use of UDP as a transport. In the near future, we plan to implement fragmentation and

reassembly of data blocks in order to raise the maximum value size substantially.

5.5 Discussion

OpenDHT is currently a single infrastructure that provides storage for free. While this

is appropriate for a demonstration project, it is clearly not viable for a large-scale and long-term

service on which applications critically rely. Thus, we expect that any success trajectory would

involve the DHT service becoming a commercial enterprise. This entails two significant changes.

First, storage can no longer be free. The direct compensation may not bemonetary (e.g., gmail’s

business model), but the service must somehow become self-sustaining. Wedon’t speculate about

the form this charging might take but only note that it will presumably involve authenticating the

OpenDHT user. This could be done at the OpenDHT gateways using traditional techniques.

Second, a cooperating but competitive market must emerge, in which various competing

DHT service providers (DSPs) peer together to provide a uniform DHT service, a DHT “dialtone,”

much as IP is a universal dialtone. Applications and clients should be able to access their DSPs

(the ones to whom they’ve paid money or otherwise entered into a contractual relationship) and

access data stored by other applications or clients who have different DSPs. We don’t discuss this

in detail, but a technically feasible and economically plausible peering arrangement is described by

Balakrishnan et al. [BSW05]. Each DSP would have incentive to share puts and gets with other

DSPs, and there are a variety of ways to keep the resulting load manageable. DHT service might

be bundled with traditional ISP service (like DNS), so ISPs and DSPs wouldbe identical, but a

separate market could evolve.

If such a market emerges, then DHT service might become a natural part of the com-

putational infrastructure on which applications could rely. This may not significantly change the

landscape for large-scale, high-demand applications, which could haveeasily erected a DHT for

their own use, but it will foster the development of smaller-scale applicationsfor which the demand

is much less certain. Our early experience suggests there are many such applications, but only time

will tell.

107

5.6 Summary

In this chapter we have described the design and early deployment of OpenDHT, a public

DHT service. Its put/get interface is easy for simple clients to use, and the ReDiR library expands the

functionality of this interface so that OpenDHT can support more demandingapplications. Storage

is allocated fairly according to our per-IP-address and per-disk definition of fairness. The deploy-

ment experience with OpenDHT has been favorable; the system is currently supporting a variety of

applications, and is slowly building a user community. The latency and availability itprovides is

adequate and will only get better as basic DHT technology improves.

108

Chapter 6

Handling Non-Transitive Connectivity

The most basic functionality of a distributed hash table, or DHT, is to partition a key

space across the set of nodes in a distributed system such that all nodesagree on the partitioning.

For example, as discussed throughout this thesis, Bamboo assigns each node a random identifier

from the key space of integers modulo 2160 and maps each keyk to the node whose identifieri

minimizes|i−k| mod 2160. So long as every Bamboo node knows its predecessor and successorin

the key space, any node can compute which keys are mapped onto it.

An implicit assumption in Bamboo and other DHT protocols is that all nodes are able

to communicate with each other, yet we know this assumption is unfounded in practice. We say

a set of three hosts,A, B, andC exhibit non-transitivityif A can communicate withB, andB can

communicate withC, but A cannot communicate withC. As we show in Section 6.1, 2.3% of all

pairs of nodes on PlanetLab exhibit transient periods in which they cannot communicate with each

other, but in which they can communicate through a third node.

Such non-transitivity in the underlying network is problematic for DHTs. Consider for

example the Bamboo network illustrated in Figure 6.1. The closest node tok is B. If nodesB and

C are unable to communicate with each other, however, they will both believe theyare closest tok,

B Dk
CA

Figure 6.1:Non-transitivity in Bamboo.The dashed lines represent leaf set neighbor links.

109

and the mapping of identifiers onto nodes will not be unique.1

While this example may seem contrived, it is in fact quite common. If each pair ofnodes

with adjacent identifiers in a 300-node Bamboo network (independently) has a 0.1% chance of being

unable to communicate, then we expect that there is a 1−0.999300≈ 26% chance thatsomepair will

be unable to communicate at any time. However, both nodes in such a pair havea 0.9992 chance of

being able to communicate with either of the nodes that most immediately precede or follow them

both.

While DHT algorithms seem quite elegant on paper, in practice we found that agreat

deal of the work getting Bamboo and OpenDHT to work on PlanetLab was spent discovering and

fixing problems caused by non-transitivity. Of course, maintaining a full link-state routing table at

each DHT node would have sufficed to solve all such problems, but wouldalso require considerably

more bandwidth than a basic DHT.2 Instead, we discovered a set of “hacks” to cover up the false

assumption of full connectivity on which DHTs are based.

After fixing Bamboo and OpenDHT so that they handle non-transitivity, we discovered

that the authors of the Chord [SMK+01] implementation ini3 [SAZ+02] and the Kademlia [MM02]

implementation in Coral [FFM04] had gone through a similar process.

In this chapter we report on the combined experience gleamed from these three implemen-

tation efforts. We categorize the ways in which Bamboo, Chord, and Kademliabreak down under

non-transitivity, and we enumerate the ways they can be modified to cope with these shortcomings.

We also discuss application-level solutions to the problem.

While we present these techniques mainly for completeness of this thesis, we also hope

that—at least in the short term—this work will save others the effort. In the longer term, we believe

an interesting research problem is the design of a DHT algorithm that tacklesnon-transitivity head-

on.

The next section quantifies the prevalence of non-transitivity on the Internet and surveys

related work in this area. Section 6.2 presents a brief review of DHT terminology. Section 6.3

discusses four problems caused by non-transitivity in DHTs and our solutions to them. Finally,

Section 6.4 concludes.
1This problem was first pointed out by Li et al. [LSM+05], in the context of the Chord and Tapestry DHTs, although

they did not present any solutions to it.
2For some applications, link-state routing may in fact be the right solution, but such systems are outside the scope of

this thesis.

110

6.1 Prevalence of Non-Transitivity

The Internet is known to suffer from network outages (such as extremely heavy conges-

tion or routing convergence problems) that result in the loss of connectivity between some pairs

of nodes [Pax97, ABKM01]. Furthermore, the loss of connectivity is often non-transitive; in fact,

RON [ABKM01] and SOSR [GMG+02] take advantage of such non-transitivity—the fact that two

nodes that cannot temporarily communicate with one another often have a thirdnode that can com-

municate with them both—to improve resilience by routing around network outages.

Gerding and Stribling [GS03] observed a significant degree of non-transitivity among

PlanetLab hosts; of all possible unordered three-tuples of nodes(A,B,C), about 9% exhibited non-

transitivity. Furthermore, they attributed this non-transitivity to the fact that PlanetLab consists of

three classes of nodes: Internet1-only, Internet2-only, and multi-homednodes. Although Internet1-

only and Internet2-only nodes cannot directly communicate, multi-homed nodes can communicate

with them both. (We don’t run OpenDHT on the Internet2-only nodes, so this particular form of

non-transitivity does not affect us.)

Extending the above study, however, we have found thattransientrouting problems within

the Internet1-only and multihomed nodes on PlanetLab are also a major source of non-transitivity. In

particular, we considered a three hour window on August 3, 2005 fromthe all-pairs ping dataset [Str].

The dataset consists of pings between all pairs of nodes conducted every 15 minutes, with each data

point averaged over ten ping attempts. We counted the number of unordered pairs of hosts(A,B)

such thatA andB cannot reach each other but another hostC can reach bothA andB. We found that,

of all pairs of nodes, about 5.2% of them belonged to this category over the three hour window. Of

these pairs of nodes, about 56% of the pairs had persistent problems; these were probably because

of the problem described above. However, the remaining 44% of the pairsexhibited problems inter-

mittently; in fact, about 25% of the pairs could not communicate with each other in only one of the

15-minute snapshots. This suggests that non-transitivity is not entirely an artifact of the PlanetLab

testbed, but also caused by transient routing problems.

6.2 Chord and Kademlia

Before moving on to the core of this paper, we first briefly review the terminology used in

Chord and Kademlia, although we assume the reader has some basic familiarity with their routing

protocols. For more information, see [SMK+01,MM02].

111

Like Bamboo, Chord and Kademlia both assign each participating node a random identi-

fier from the key space of integers modulo 2160. While Bamboo maps each keyk to the node with

identifier i that minimizes|i−k| mod 2160, Chord mapsk to the node whose identifier most imme-

diately follows it, and Kademlia mapsk to the node whose identifieri minimizesi XOR k. The root

for a key in Chord is often called itssuccessor.

The equivalent of Bamboo’s leaf set and routing table in Chord are thesuccessor list, ther

nodes that most immediately follow a node, and thefinger table, a set of nodes exponentially further

away from a node around the ring. Kademlia has no direct equivalent of these structures, although

it still has nearby and distant neighbors in the key space.

All three protocols greedily traverses the nodes of the DHT to perform a lookup, progress-

ing closer to the root of the key at each step.

6.3 Problems and Solutions

This section presents problems caused by non-transitivity in DHTs and the methods we

use to mitigate them. We present these problems in increasing order of how difficult they are to

solve.

6.3.1 Invisible Nodes

One problem due to non-transitivity occurs when a node learns about system participants

from other nodes, yet cannot directly communicate with these newly discovered nodes. This prob-

lem arises both during neighbor maintenance and while performing lookups.

For example, assume that a nodeA learns about a potential neighborB through a third

nodeC, butA andB cannot directly communicate. We say that fromA’s perspectiveB is aninvisible

node. In early versions of both Bamboo andi3-Chord,A would blindly addB as a neighbor. Later,

A would notice thatB was unreachable and remove it, but in the meantime it would try to route

messages through it.

A related problem occurs when nodes blindly trust failure notifications from other nodes.

Continuing the above example, whenA fails to contactB due to non-transitivity, in a naive imple-

mentationA will inform C of this fact, andC will erroneously removeB as a neighbor.

A simple fix for both of these problems is to prevent nodes from blindly trustingother

nodes with respect to which nodes in the network are up or down. Instead, a nodeA should only

112

A

S

N

M,N
R

M

Figure 6.2:Invisible nodes. Slearns aboutM andN from A while trying to route toR, butShas no
direct connectivity toM. By sending lookup messages toM andN in parallel,Savoids being stalled
while its request toM times out.

add a neighborB after successfully communicating with it, andA should only remove a neighbor

with whom it can no longer directly communicate. This technique is used by all three of our DHTs.

Invisible nodes also cause performance problems during iterative routing, where the node

performing a lookup must communicate with nodes that are not its immediate neighbors in the

overlay. For example, as shown in Figure 6.2, a nodeS may learn of another nodeM through its

neighborA, but be unable to directly communicate withM to perform a lookup.Swill eventually

time out its request toM, but such timeouts increase the latency of lookups substantially.

Three techniques can mitigate the effect of invisible nodes on lookup performance in itera-

tive routing. First, a DHT can use virtual coordinates such as those computed by Vivaldi [CDK+03b]

to chose tighter timeouts. This technique should work well in general, althoughwe have found that

the Vivaldi implementations in both Bamboo and Coral are too inaccurate on PlanetLab to be of

much use.

Second, a node can send several messages in parallel for each lookup, allowing requests

to continue towards the root even when some others time out. As shown in Figure 6.2,Scan send

lookup messages toM andN in parallel. This technique was first proposed in Kademlia [MM02].

(We have also found it effective at reducing latency in OpenDHT; see Chapter 7.)

Third, a node can remember other nodes that it was unable to reach in the past. Using this

technique, which we calla unreachable node cache, a nodeSmarksM as unreachable after a few

failed communication attempts. Then, ifM is discovered again during a subsequent lookup request,

S immediately concludes that it is unreachable without wasting bandwidth and suffering a timeout.

OpenDHT andi3 both use recursive routing, but Coral implements iterative routing using

the above approach, maintaining three parallel RPCs and a unreachable node cache with at most

113

Loopy Lookup Path
Following Predecessor Links

S

P
R

N

Figure 6.3: Routing loops. In Chord, if a lookup passes by the correct successor on account of
non-transitivity, a routing loop arises. The correctness of lookup can be improved in such cases by
traversing predecessor links.

512 nodes stored for at most 30 minutes each.

6.3.2 Routing Loops

In Chord, non-transitivity causes routing loops as follows. The root for a keyk in Chord

is the node whose identifier most immediately succeedsk in the circular key space. In Figure 6.3,

let the proper root fork beR. Also, assume thatP cannot communicate withR. A lookup routed

throughP thus skips overR to N, the next node in the key space with whichP can communicate.

N, however, knows its correct predecessor in the network, and therefore knows that it is not the root

for k. It thus forwards the lookup around the ring, and a loop is formed.

Bamboo and Kademlia avoid routing loops by defining a total ordering over nodes during

routing. In these networks, a nodeA only forwards a lookup on keyk to another nodeB if |B−k|<
|A−k|, where “−” represents modular subtraction in Bamboo and XOR in Kademlia.

Introducing such a total ordering in Chord is straightforward: instead ofblindly forward-

ing a lookup towards the root, a node can stop any lookup that has alreadypassed its root. For

example, whenN receives a lookup fork from P, it knows something is amiss, sinceP< k < N, but

N is not the direct successor ofk.

Stopping a lookup in this way avoids loops, but it is often possible to get closer to the root

for a key by routing along predecessor links once normal routing has stopped.i3’s Chord implemen-

tation backtracks in this way. For example, the dashed lines fromN back toR in Figure 6.3 show

the path of the lookup using predecessor links. To guarantee termination when backtracking, once a

114

Alternate Return Path 1
Standard Join/Put/Get Path

Alternate Return Path 2

S

R

T

Figure 6.4:Broken return paths.AlthoughScan route a put or get request toR through the overlay,
there may be no direct IP route back fromR to S. One alternative is to route the result back along
the path taken fromS to R; the other is to route through a random neighborT.

packet begins following predecessor links it is never again routed alongforward links. Furthermore,

a time-to-live (TTL) is used to avoid long predecessor paths.

6.3.3 Broken Return Paths

Often an application built atop a DHT routing layer wants not only to route to the root

of a key but also to retrieve some value back. For example, it may route a putrequest to the root,

in which case it expects an acknowledgment of its request in return. Likewise, with a get request,

it expects to receive any values stored under the given key. In one very important case, it routes

a request to join the DHT to the root and expects to receive the root’s leaf set or successor list in

return.

As shown in Figure 6.4, when a sourceS routes a request recursively to the rootR, the

most obvious and least costly way forR to respond is to communicate directly withS(i.e., over IP).

While this approach works well in the common case, it fails with non-transitivity;the existence of

a route fromS to R through the overlay does not guarantee the existence of the direct IP route back.

We know of two solutions to this problem.

The first solution is to source route the message backwards along the path ittraveled from

S to R in the first place, as shown by the dotted line in Figure 6.4. Since each node along the path

forwarded the message through a neighbor that had been responding toits probes for liveness, it is

likely that this return path is indeed routable. A downside of this solution is that the message takes

several hops to return to the client, wasting the bandwidth of multiple nodes.3

3A similar approach, whereR uses the DHT’s routing algorithm to route its response toS’s identifier, has a similar

115

A less costly solution is to haveRsource route its response toSthrough a random member

of its leaf set or successor list, as shown by the dashed line in Figure 6.4. These nodes are chosen

randomly with respect toR itself (by the random assignment of node identifiers), so most of them

are likely to be able to route toS. Moreover, we already know thatR can route to them, or it would

not have them as neighbors.

A problem with both of these solutions is that they waste bandwidth in the common case

whereR can indeed send its response directly toS. To avoid this waste, we haveS acknowledge

the direct response fromR. If R fails to receive an acknowledgment after some timeout,R source

routes the response back (either along the request path or through a single neighbor). This timeout

can be chosen using virtual coordinates, although we have had difficultywith Vivaldi on PlanetLab

as discussed earlier. Alternatively, we can simply choose a conservative timeout value: as it is used

only in the uncommon case whereR cannot route directly toS, it affects the latency of only a few

requests in practice.

Bamboo/OpenDHT routes back through a random leaf-set neighbor in thecase of non-

transitivity, using a timeout of five seconds. At the time of this writing,i3’s Chord implementation

does not handle broken return paths.

We note that iterative routing (as used in Coral) does not directly suffer from this prob-

lem. SinceS directs the routing process itself, it will assumeR is down and look for an alternate

root, R′ (the node that would be the root ifR were actually down). Of course, depending on the

application,R′ may not be a suitable replacement forR, but that situation reduces to the inconsistent

root problem, which we discuss next.

6.3.4 Inconsistent Roots

The problems we have discussed so far are all routing problems. In this section, we

discuss a problem caused by non-transitivity that affects the correctness of the partitioning of the

DHT key space.

Many DHT applications assume that there is only one root for a given key inthe DHT at

any given time. As shown in Figure 6.5, however, this assumption may be invalidin the presence

of non-transitivity. In the figure, nodeC is the proper root of keyk, but sinceC and D cannot

communicate,D mistakenly believes it is the root fork. A lookup fromS1 finds the correct root, but

a lookup fromS2 stops atD.

cost but a lower likelihood of success in most cases, so we ignore it here.

116

k

Put Path
Get Path
Replica Synchronization

C

E

S

S

2

1

D

A
B

Figure 6.5:Inconsistent roots.A put from S1 is routed to the root,C, which should replicate it on
A–D. But sinceC cannot communicate withD, it replicates it onA, B, andE instead.D will later
acquire a replica when it performs local maintenance withA, B, or E.

Other work has explored the issue of multiple roots due to transient conditionscreated

by nodes joining and leaving the overlay, but did not explore the effects of misbehavior in the

underlying network [CCR03b]. Furthermore, given a complete partition of the network, it is difficult

to solve this problem at all, and we are not aware of any existing solutions to it.On the other hand,

if the degree of non-transitivity is limited, the problem can be eliminated by the useof a consensus

algorithm. The use of such algorithms in DHTs is an active area of research[MGM05, RL03,

LMR02].

Nonetheless, consensus is expensive in messages and bandwidth, so many existing DHTs

use a probabilistic approach to solving the problem instead. For example, FreePastry 1.4.1 maintains

full link-state routing information for each leaf set, and a node is considered alive if any other

member of its leaf set can route to it [fre05]. Once routability has been provided in this manner,

existing techniques (e.g., [CCR03b]) can be used to provide consistency.

We note that both OpenDHT and DHash [Cat03] solve the inconsistent rootproblem at

the application layer using the storage algorithms described in Chapter 4. As shown in Figure 6.5,

OpenDHT sends a put request fromS1 for a key-value pair(k,v) to the`′ closest predecessors and

successors ofk, each of which stores a replica of(k,v). In the figure,C cannot communicate with

D, and hence the wrong set of nodes store replicas.

Note that this problem will be automatically fixed by OpenDHT’s replica synchronization

and discard algorithms. The next time that nodeD synchronizes with nodeA or B, it will discover

the missing value. The fate of the extra value stored byE depends onE’s connectivity. IfE can

117

communicate with bothC andD, it will notice that it should not be storing values under keyk, and

will discard the value to one ofA–D. Otherwise, it will continue storing the value, andD may also

acquire the value fromE in its next round of replica synchronization.

Of course, ifB fails to synchronize withC–E between the put fromS1 and the get from

S2, it will mistakenly send an empty response for the get.

To avoid this case, for each get request on keyk, OpenDHT queries multiple replicas for

k, although we postpone the discussion of that technique to the next chapter.

6.4 Conclusion

In this chapter, we enumerated several ways in which Bamboo, Chord, and Kademlia

break down under non-transitivity, and presented our experiences indealing with the problems in

Bamboo, as well as the related experiences of the other DHT’s designers. Currently, non-transitivity

is no longer a significant problem in our OpenDHT deployment. Nonetheless, it remains an inter-

esting open problem as to whether a DHT can be designed to handle non-transitivity natively.

118

Chapter 7

Handling Slow Nodes

At the time of this writing, we have run OpenDHT on PlanetLab for 16 months. As

described in earlier chapters, OpenDHT is built on Bamboo, which uses tested techniques to mini-

mize latency and maximize stability. Still, our most persistent complaint from actual and potential

OpenDHT users remains, “It’s just not fast enough!”

Specifically, while the long-term median latency of a get in OpenDHT is just under

200 ms—matching the best performance reported for DHash [DLS+04] on PlanetLab—the 99th

percentile is measured in seconds, and even the median can rise above halfa second for short peri-

ods (see Figure 5.6).

Unsurprisingly, the long tail of this distribution is caused by a few, arbitrarilyslow nodes.

We have observed disk reads that take tens of seconds, computations that take hundreds of times

longer to perform at some times than others, and internode ping times well overa second. We are

thus tempted to blame our performance woes on PlanetLab (a popular pastime in distributed systems

these days), but this excuse is problematic for two reasons.

First, peer-to-peer systems are supposed to capitalize on existing resources not necessarily

dedicated to the system, and do so without extensive management by trained operators. In contrast

to managed cluster-based services supported by extensive advertisingrevenue, peer-to-peer systems

were supposed to bring power to the people, even those with flaky machines.

Second, it is not clear that the problem of slow nodes is limited to PlanetLab. For ex-

ample, the best DHash performance on the RON testbed, which is smaller and less loaded than

PlanetLab, still shows a 99th percentile get latency of over a second [DLS+04]. Furthermore, it is

well known that even in a managed cluster the distribution of individual machines’ performance is

long-tailed. The performance of Google’s MapReduce system, for example, was improved by 31%

119

when it was modified to account for a few slow machines its designers called “stragglers” [DG04].

While PlanetLab’s performance is clearly worsened by the fact that it is heavily shared, the mod-

ern trend towards utility computing indicates that such sharing may be the case with many service

infrastructures in the future.

It also seems unlikely that one could “cherry pick” a set of well-performing hosts for

OpenDHT. The MapReduce designers, for example, found that a machine could suddenly become a

straggler for a number of reasons, including cluster scheduling conflicts, a partially failed hard disk,

or a botched automatic software upgrade. Also, as we show in Section 7.1, the set of slow nodes

isn’t constant on PlanetLab or RON. For example, while the 90% of the time it takes under 10 ms to

read a random 1 kB disk block on PlanetLab, over a period only 50 hours, 235 of 259 hosts will take

over 500 ms to do so at least once. While one can find a set of fast nodesfor a short experiment, it

is nearly impossible to find such a set on which to host a long-running service.

We thus adopt the position that the best solution to the problem of slow nodes isto modify

our algorithms to account for them automatically. Using a combination of delay-aware routing and

a moderate amount of redundancy, our best technique reduces the median latency of get operations

to 51 ms and the 99th percentile to 387 ms, a tremendous improvement over our original algorithm.

In the next section we quantify the problem of slow nodes on both PlanetLaband RON.

Then, in Sections 7.2 and 7.3, we describe several algorithms for mitigating theeffects of slow

nodes on end-to-end get latency and show their effectiveness in an OpenDHT deployment of ap-

proximately 300 PlanetLab nodes. We conclude in Section 7.4.

7.1 The Problem of Slow Nodes

In this section, we illustrate the problem of slow nodes in PlanetLab and RON.

Figure 7.1 present CCDFs of the time to compute a 128-bit RSA key pair or read a random

1 kB block from a 1 GB file on PlanetLab using a simple C program running in its own slice. Each

line represents a single node, and the lines have similar shapes. In particular, while most nodes are

fast most of the time, virtually all nodes are slow some of the time, taking tens to hundreds of times

longer in the worst case than the common one.

We ran the disk read test shown in Figure 7.1.b on 259 PlanetLab nodes for50 hours,

pausing five seconds between reads. Figure 7.2.a shows the number of nodes that took over 100 ms,

over 500 ms, over 1 s, or over 10 s to read a block since the start of measurement. In only 6 hours,

184 nodes take over 500 ms at least once; in 50 hours, 235 do so.

120

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

1-
C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Latency (ms)

(a)

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.01 0.1 1 10 100 1000 10000 100000

1-
C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Latency (ms)

(b)

Figure 7.1:Computation and disk read times on PlanetLab.The left-hand graph shows the time to
compute a 128-bit RSA key pair, while the right-hand graph shows the time to read a random 1 kB
block from a 1 GB file.

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50

U
ni

on
 s

iz
e

Time difference (hours)

Union size (>=100ms)
Union size (>=500ms)

Union size (>=1s)
Union size (>=10s)

(a)

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80 90
 0

 0.05

 0.1

 0.15

 0.2

 0.25
U

ni
on

 s
iz

e

La
te

nc
y

(s
ec

on
ds

)

Time difference (hours)

Union size
Rank 14 RTT
Rank 8 RTT

(b)

Figure 7.2:The variation in the set of slow nodes over time.The left-hand graph shows the union of
all PlanetLab nodes that have taken longer than 100 ms, 500 ms, 1 s, or 10 sto return a disk block
since the start of the test. The right-hand graph shows the how the set of the RON nodes with the
slowest network latencies to their peers changes over time.

Figure 7.2.b shows a similar graph produced from a trace of round-trip timesbetween 15

nodes on RON [ron]. We compute for each node the median RTT to each of the other fourteen, and

rank nodes by these values. The lower lines show the values for the eighthlargest and second largest

values over time, and the upper line shows the size of the set of nodes that have ever had the largest

or second largest value. In only 90 hours, 10 of 15 nodes have beenin this set. This graph shows

that while the aggregate performance of the 15 nodes is relatively stable, the ordering (in terms of

performance) among them changes greatly.

In summary, Figures 7.1 and 7.2 show that on both PlanetLab and RON, the slowest

nodes at any time are significantly slower than those in the fastest half, and that this set of slow

121

nodes changes relatively quickly over time.

7.2 Algorithmic Solutions

Before presenting the techniques we have used to improve get latency in OpenDHT, we

give a brief overview of how gets were performed before.

7.2.1 The Basic Algorithm

Recall that the key space in Bamboo is the integers modulo 2160. Each node in the system

is assigned an identifier from this space uniformly at random. For fault-tolerance and availability,

each key-value pair(k,v) is stored on the four nodes that immediately precede and followk; we call

these eight nodes thereplica setfor k, denotedR(k). The node numerically closest tok is called its

root.

Each node in the system knows the eight nodes that immediately precede and follow it in

the key space. Also, for each (base 2) prefix of a node’s identifier, ithas one neighbor that shares

that prefix but differs in the next bit. This latter group is chosen for network proximity; of those

nodes that differ from it in the first bit, for example, a node chooses the closest from roughly half

the network.

Messages between OpenDHT nodes are sent over UDP and individually acknowledged

by their recipients. A congestion-control layer provides TCP-friendliness and retries dropped mes-

sages, which are detected by a failure to receive an acknowledgment within an expected time. This

layer also exports to higher layers an exponentially weighted average round-trip time to each neigh-

bor.

To put a key-value pair(k,v), a client sends a put RPC to an OpenDHT node of its choice;

we call this node thegatewayfor this request. The gateway then routes a put message greedily

through the network until it reaches the root fork, which forwards it to the rest ofR(k). When

six members of this set have acknowledged it, the root sends an acknowledgment back to the gate-

way, and the RPC completes. Waiting for only 6 of 8 acknowledgments prevents a put from being

delayed by one or two slow nodes in the replica set. These delays, churn,and Internet routing incon-

sistencies may all cause some replicas in the set to have values that others donot. To reconcile these

differences, the nodes in each replica set periodically synchronize witheach other, as described in

Chapter 4.

122

R(k), S(k)

Client

G

m

get(k)

{v}

k, {v},

R(k), S(k)
k, {v},Other Nodes

R(k)
Gateway

Figure 7.3:A basic get request.

As shown in Figure 7.3, to perform a get for keyk, the gatewayG routes a get request

message greedily through the key space until it reaches some nodeR∈ R(k). R replies with any

values it has with keyk, the setR(k), and the set of nodesS(k) with which it has synchronized on

k recently.G pretends it has received responses fromR and the nodes inS(k); if these total five or

more, it sends a response to the client. Otherwise, it sends the request directly to the remaining nodes

in R(k) one at a time until it has at least five responses (direct or assumed due to synchronization).

Finally, G compiles a combined response and returns it to the client.

By combining responses from at least five replicas, we ensure that even after the failure

of two nodes, there is at least one node in common between the nodes that receive a put and those

whose responses are used for a get.

7.2.2 Enhancements

We have explored three techniques to improve the latency of gets: delay-aware routing,

parallelization of lookups, and the use of multiple gateways for each get.

Delay-Aware Routing

In the basic algorithm, we route greedily through the key space. Because each node selects

its neighbors according to their response times to application-level pings, most hops are to nearby,

responsive nodes. Nonetheless, a burst in load may render a once-responsive neighbor suddenly

slow. Bamboo’s neighbor maintenance algorithms are designed for stability ofthe network, and

so adapt to such changes gradually. The round-trip times exported by thecongestion-control layer

are updated after each message acknowledgment, however, and we canuse them to select among

123

neighbors more adaptively.

The literature contains several variations on using such delay-aware routing to improve

get latency. Gummadi et al. demonstrated that routing along the lowest-latencyhop that makes

progress in the key space can reduce end-to-end latency, although their results were based on simu-

lations where the per-hop processing cost was ignored [GGG+03]. DHash, in contrast, uses a hybrid

algorithm, choosing each hop to minimize the expected overall latency of a get, using the expected

latency to a neighbor and the expected number of hops remaining in the queryto scale the progress

each neighbor makes in the key space [DLS+04].

We have explored several variations on this theme. For each neighborn, we computè n,

the expected round-trip time to the neighbor, anddn, the progress made in the key space by hopping

to n, and we modified OpenDHT to choose the neighborn with maximumh(`n,dn) at each hop,

whereh is as follows:

Purely greedy: h(`n,dn) = dn

Purely delay-based: h(`n,dn) = 1/`n

Linearly scaled: h(`n,dn) = dn/`n

Nonlinearly scaled: h(`n,dn) = dn/ f (`n)

where f (`n) = 1+ e(`n−100)/17.232. This function makes a smooth transition for`n around 100 ms,

the approximate median round-trip time in the network. For round-trip times below 100 ms, the non-

linear mode thus routes greedily through the key space, and above this value it routes to minimize

the per-hop delay.

Iterative Routing

Our basic algorithm performs get requestsrecursively; routing each request through the

network to the appropriate replica set. In contrast, gets can also be performediteratively, where the

gateway contacts each node along the route path directly, as shown in Figure 7.4. While iterative re-

quests involve more one-way network messages than recursive ones, they remain attractive because

they are easy to parallelize. As first proposed in Kademlia [MM02], a gateway can maintain several

outstanding RPCs concurrently, reducing the harm done by a single slow peer.

To perform a get on keyk iteratively, the gateway node maintains up top outstanding

requests at any time, and all requests are timed out after five seconds. Each request containsk and

the Vivaldi [CDK+03b] network coordinates of the gateway. When a nodem 6∈ R(k) receives a get

request, it uses Vivaldi to compute`n relative to the gateway for each of its neighborsn, and returns

124

R(k), S(k)

A

get(k)

{v}
Client

G k, {v},

k, {v},
R(k), S(k)

m

Other Nodes
R(k)
Gateway

Figure 7.4:An iterative get request.

the three with the largest values ofh(dn, `n) to the gateway.

When a nodem∈ R(k) receives a get request, it returns the same response as in recursive

gets: the set of values stored underk and the setsR(k) andS(k). Once a gateway has received a

response of this form, it proceeds as in recursive routing, collecting atleast five responses before

compiling a combined result to send to the client.

Multiple Gateways

Unlike iterative gets, recursive gets are not easy to parallelize. Also, in both iterative

and recursive gets, the gateway itself is sometimes the slowest node involvedin a request. For

these reasons we have also experimented with issuing each get request simultaneously to multiple

gateways. This adds parallelism to both types of get, although the paths of theget requests may

overlap as they near the replica set, and it also hides the effects of slow gateways.

7.3 Experimental Results

It is well known that as a shared testbed, PlanetLab cannot be used to gather exactly

reproducible results. In fact, the performance of OpenDHT varies on ahourly basis.

Despite this limitation, we were able to perform a meaningful quantitative comparison

between our various techniques as follows. We modified OpenDHT such that each of the modes

can be selected on a per-get basis, and we put into OpenDHT five 20-byte values under each of

3,000 random keys, re-putting them periodically so they would not expire.We then wrote a script

that picks a key at random and performs one get for each possible modein a random order. The

125

Parameters Latency (ms) Cost per Get
GW I/R p Mode Avg 50th 90th 99th Msgs Bytes

1 Orig. Alg. 434 186 490 8113 not measured

1 R 1 Greedy 282 149 407 4409 5.5 1833
1 R 1 Prox. 298 101 343 5192 8.7 2625
1 R 1 Linear 201 99 275 3219 6.8 2210
1 R 1 Nonlin. 185 104 263 1830 6.0 1987
1 I 3 Greedy 157 116 315 788 14.6 3834
1 I 3 Prox. 477 335 1016 2377 33.1 6971
1 I 3 Linear 210 175 422 802 18.8 4560
1 I 3 Nonlin. 230 175 455 1103 18.3 4458
1 R 1 Nonlin. 185 104 263 1830 6.0 1987
2 R 1 Nonlin. 174 99 267 1609 6.0 1987

1–2 R 1 Nonlin. 107 71 171 609 11.9 3973
1 I 3 Greedy 157 116 315 788 14.6 3834
2 I 3 Greedy 147 110 294 731 14.6 3834

1–2 I 3 Greedy 88 70 195 321 29.3 7668
1–2 I 1 Greedy 141 96 289 638 13.9 4194
1–2 I 2 Greedy 97 78 217 375 22.5 6181

1–3 R 1 Nonlin. 90 57 157 440 16.8 5332
1–4 R 1 Nonlin. 81 51 142 387 22.4 7110
1–2 I 2 Greedy 105 84 232 409 20.2 5352
1–2 I 3 Greedy 95 76 206 358 26.5 6674
1–3 I 2 Greedy 86 62 196 332 30.3 8028

Table 7.1: Performance on PlanetLab. GW is the gateway, 1–4 for
planetlab(14|15|16|13).millennium.berkeley.edu. I/R is for iterative or recursive. The costs
of the single gateway modes are estimated as half the costs of using both.

script starts each get right after the previous one completes, or after a timeout of 120 seconds. After

trying each mode, the script picks a new key, a new random ordering of the modes, and repeats. So

that we could also measure the cost of each technique, we further modified the OpenDHT code to

record the how many messages and bytes it sends on behalf of each type of get. We ran this script

from July 29, 2005 until August 3, 2005, collecting 27,046 samples per mode to ensure that our

results cover a significant range of conditions on PlanetLab.

Table 7.1 summarizes the results of our experiments.

The first row of the table shows that our original algorithm, which always routed all the

way to the root, takes 186 ms on median and over 8 s at the 99th percentile.

The next block of four rows shows the performance of the basic recursive algorithm of

126

Section 7.2.1, using only one gateway and each of the four routing modes described in Section

7.2.2. We note that while routing with respect to delay alone improves get latency some at the lower

percentiles, the linear and nonlinear scaling modes greatly improve latency atthe higher percentiles

as well. The message counts show that routing only by delay takes the most hops, and with each hop

comes the possibility of landing on a newly slow node; the scaled modes, in contrast, pay enough

attention to delays to avoid the slowest nodes, but still make quick progress inthe key space.

We note that the median latencies achieved by all modes other than greedy routing are

lower than the median network RTT between OpenDHT nodes, which is approximately 137 ms.

This seemingly surprising result is actually expected; with eight replicas pervalue, the DHT has the

opportunity to find the closest of eight nodes on each get. Using the distribution of RTTs between

nodes in OpenDHT, we computed that an optimal DHT that magically chose the closest replica and

retrieved it in a single RTT with no processing delay would have a median get latency of 31 ms, a

90th percentile of 76 ms, and a 99th percentile of 130 ms.

The next four rows show the same four modes, but using iterative routingwith a paral-

lelism factor, p, of 3. Note that the non-greedy modes are not as effective here as for recursive

routing. We believe there are two reasons for this effect. First, the per-hop cost in iterative routing

is higher than in recursive, as each hop involves a full round-trip, andon average the non-greedy

modes take more hops for each get. Second, recursive routing uses fresh, direct measurements of

each neighbor’s latency, but the Vivaldi algorithm used in iterative routing cannot adapt as quickly

to short bursts in latency due to load.

Despite their inability to capitalize on delay-awareness, the extra parallelism ofiterative

gets provides enough resilience to far outperform recursive ones atthe 99th percentile. This speedup

comes at the price of a factor of two in bandwidth used, however.

The next three rows show the benefits of using two gateways with recursive gets. We note

that while both gateways are equally slow individually, waiting for only the quickest of them to

return for any particular get greatly reduces latency. In fact, for the same cost in bandwidth, they far

outperform iterative gets at all percentiles.

The next three rows show that using two gateways also improves the performance of

iterative gets, reducing the 99th percentile to an amazing 321 ms, but this performance comes at a

cost of roughly four times that of recursive gets with a single gateway.

The next two rows show that we can reduce this cost by reducing the parallelism factor,

p, while still using two gateways. Usingp = 1 gives longer latencies than recursive gets with the

same cost, but usingp = 2 provides close to the performance ofp = 3 at only three times the cost

127

of recursive gets with a single gateway.

Since iterative gets with two gateways andp = 3 use more bandwidth than any of the

recursive modes, we ran a second experiment using up to four gateways per get request. This

experiment involved 80,000 samples per mode collected from August 3, 2005 until August 9, 2005.

The final five rows show the results. For the same cost, recursive gets are faster than iterative ones

at both the median and 90th percentile, but slower at the 99th.

These differences make sense as follows. As the gateways are co-located, we expect the

paths of recursive gets to converge to the same replica much of the time. In thecommon case, that

replica is both fast and synchronized with its peers, and recursive getsare faster, as they have more

accurate information than iterative gets about which neighbor is fastest ateach hop. In contrast,

iterative gets withp > 1 actively explore several replicas in parallel and are thus faster whenone

discovered replica is slow or when the first replica is not synchronized with its peers, necessitating

that the gateway contact multiple replicas.

7.4 Conclusions

In this chapter we highlighted the problem of slow nodes in distributed systems,and we

demonstrated that their effect on overall system performance can be mitigated through a combina-

tion of delay-aware algorithms and a moderate amount of redundancy. Using only delay-awareness,

we reduced the 99th percentile get latency from over 8 s to under 2 s. Using a factor of four more

bandwidth, we can further reduce the 99th percentile to under 400 ms and cut the median by a factor

of three.

Looking beyond our specific results, we note that there has been a lot ofcollective hand-

wringing recently about the value of PlanetLab as an experimental platform.The load is so high, it

is said, that one can neither get high performance from an experimental service nor learn interesting

systems lessons applicable elsewhere.

We have certainly cast some doubt on the first of these two claims. The latencies shown

in Table 7.1 are low enough to enable many applications that were once thought to be outside the

capabilities of a “vanilla” DHT. For example, Cox et al. [CMM02] worried that Chord could not

be used to replace DNS, and others argued that aggressive caching was required for DHTs to do

so [RS04a]. In contrast, even our least expensive modes are as fast as DNS, which has a median

latency of around 100 ms and a 90th percentile latency of around 500 ms [JSBM01].

As to the second claim, there is no doubt that PlanetLab is a trying environmenton which

128

to test distributed systems. That said, we suspect that the MapReduce designers might say the same

about their managed cluster. Their work with stragglers certainly bears some resemblance to the

problems we have dealt with. While the question is by no means settled, we suspect that PlanetLab

may differ from their environment mainly by degree, forcing us to solve problems at a scale of 300

nodes that we would eventually have to solve at a scale of tens of thousands of nodes. If this is the

case, perhaps PlanetLab’s slowness is not a bug, but a feature.

129

Chapter 8

Conclusion

The unavoidable price of reliability is simplicity.

— C.A.R. Hoare

In this thesis we have presented the Bamboo DHT and the OpenDHT service.The Bam-

boo lookup layer supports low-latency lookups under very high churn rates; with session times as

short as six minutes, a 1,000-node Bamboo network on ModelNet is still able toaverage around one

half second per lookup. The Bamboo storage layer supports reliable, high-performance put/get and

remove operations. Running on 200–300 nodes on PlanetLab, it has provided very high availability

as measured over months, and it maintains very low get latencies despite the presence of arbitrarily

slow nodes. Both the lookup and storage layers in Bamboo are resilient to non-transitivity in the

underlying network, a requirement for long-term use in real deployments. Furthermore, Bamboo is

a complete implementation; no part of the system is only run in simulation.

We have also presented OpenDHT, a public DHT service designed to easethe deployment

and maintenance of DHT-based applications. By providing an existing DHT deployment with a

simple put/get interface over RPC, OpenDHT allows the construction of DHT applications in tens

of lines of code.

The current put/get interface to OpenDHT is secure against most attacks. Puts cannot be

removed by arbitrary clients of the system, but only by those who know a secret chosen at the time

of the put. The particular technique used is secure against packet sniffing as well. While the current

interface is still vulnerable against drowning attacks, where malicious clientsbury an important

value in other ones, a planned interface using public-key cryptographyis not.

OpenDHT does not limit more sophisticated DHT applications to the put/get interface.

130

The ReDiR library and its variants have been used to implement lookup, multicast,and range-search.

In this capacity OpenDHT serves as a common rendezvous point for many distinct applications.

OpenDHT also guarantees a fair share of storage to each client in the system using its

fair space-time (FST) algorithm. While this algorithm is not yet deployed in the production system,

simulations show that it can provide fair shares of storage without causingstarvation.

Except for the public-key interface and FST, OpenDHT is also a complete implementa-

tion. It has been running continuously on PlanetLab and available for public use since April 2004.

Two ReDiR implementations are available, as are implementations of multicast and range search.

In the remainder of this chapter we look back on the design decisions we madethroughout

the course of this research and assess them with the benefit of hindsight.

Simplicity and Reliability

We have opened this chapter with a quote by C.A.R. Hoare, “The unavoidable price of

reliability is simplicity.” Throughout our work on Bamboo and OpenDHT, we have found this to

be the best piece of advice one could give to a distributed systems researcher. In fact, it never

ceases to amaze us that a mere 3,000 lines of code (the size of the Bamboo router) can behave so

unpredictably in aggregate when run simultaneously on 1,000 nodes.

The Pastry Partitioning

The choice of the Pastry algorithm’s partitioning scheme, that each keyk is mapped to

the node whose identifieri minimizes|i− k| mod 2160, was unwittingly wise. Using this metric,

a node can examine at any lookup message, and without knowing where it came from or where it

has been, decide whether the local node is the root or whether it should toforward the lookup on.

We cannot overemphasize the degree to which this makes programming the system easier. Because

of this simplicity, we were able to get a basic version of the Bamboo router working in under a

week, and it later continued to serve us well as we dealt, for example, with non-transitivity in the

underlying network.

Epidemic Algorithms

The use of epidemic algorithms in both the routing neighbor maintenance algorithms

and the storage management algorithms has also greatly simplified the code. We are glad to have

stumbled across the epidemic literature when we did; our first rewrite of the storage maintenance

131

algorithms using epidemic techniques required less bandwidth during node failures and joins, was

less buggy, and used less code than its predecessor. The combination ofusing a DHT to partition

the key space and epidemics to maintain consistency within a portion of that space has proved a

fruitful one.

From one point of view, we think of epidemic algorithms as embodying the philosophy

that in trying to get things exactly right, one is just as likely to mess everything up. Instead, one

should at each step simply try and make things a little better. For example, each time we move a

replica in the storage layer, we’re not necessarily placing it onto all of the“right” nodes, but we are

moving it to at least one node that should have it and does not. This point is subtle, but keeping

this philosophical notion in mind has greatly eased the design of most of the algorithms used in

Bamboo.

Link Structure

The choice of routing table neighbors in Bamboo, in retrospect, seems rather arbitrary to

us now. Gummadi et al. [GGG+03] have shown that it has few (if any) benefits over otherO(logN)

link structures (e.g., Chord), and this observation is born out by our experience. A more adaptive

structure, perhaps Accordion [LSMK05], may be the wave of the future. As Accordion has not yet

been fully implemented and “battle tested” on PlanetLab, however, it is probably too early to say

for sure.

The Pastry Routing Algorithm

Like the Pastry link structure, we’re not sure of the value of the Pastry routing algorithm,

either. If the utmost simplicity is the goal, simple greedy routing through the key space is easier to

explain, and for minimal route latency, the non-linear scaling of Chapter 7 is superior. The right

interface to a DHT router would probably allow each application to choose what routing metric it

preferred; the latest Bamboo code does just that.

Put/Get/Remove

The simplicity of put/get/remove, especially our implementations of put as append,get

as iterate, and secure, value-specific remove seems to have been a wise choice. Its semantics are

easy to understand, and it is easy for clients outside the DHT to observe what operations have been

performed and make application-level decisions if necessary. If an application prefers that only

132

one value be stored per key, it can create a total ordering over all values (by including a sequence

number and client IP address with each value, for example) and remove thelower-ordered values

when conflicts occur. But we prefer not to force such semantics on all applications.

Not “Cherry-Picking” Nodes

Whenever we have had a problem with a particular PlanetLab node, we have been tempted

to simply stop running OpenDHT on it. Instead, we have tried in each case to find some way to

have the system automatically work around it. The work in Chapter 7, for example, grew out of

this philosophy. In the long run, this approach makes the system more robustand greatly reduces

the amount of time we spend maintaining the system. As a result, as of this writing we have not

touched the maintenance interface to the public deployment in over three weeks!

Dataflow Architectures

A recent bit of research that has inspired us is the dataflow-based overlay work of Loo

et al. [LCH+05]. While it is still in its early stages, the dataflow approach and possibly eventhe

declarative specification of overlay architectures seem promising to us.

Java

Despite the doubts raised about it by many, Java has proven to be a perfectly reasonable

distributed systems programming language. It is much faster to prototype in than Cor C++, and

since most of the time the Bamboo/OpenDHT code is either waiting on the disk or the network, its

higher-level features have little effect on performance. Garbage collection can still cause annoying

pauses in execution from time to time, although these have improved with the introduction of incre-

mental collectors, and should be further reduced in the future with the continuing development of

concurrent collectors. Moreover, as the code is already designed to handle arbitrarily slow nodes,

garbage collection can be seen as just another source of unpredictableslowness.

The Nature of Systems Research

As a final point, we would like to comment on the nature of systems research and our

place in it. As we see it, there are three main types of systems research. In thefirst type, the so

called measurement study, one analyzes an existing system to discover features of its workload that

133

might be used to build a better system in the future. In the second type, what we will call the design

study, one takes the results of some measurement study and proposes a new system; this research is

usually continued to the point of building a prototype and demonstrating its improved performance

through simulation. In the third type of systems research, one builds a completeimplementation of

a system that one has already motivated, prototyped, simulated, and published papers about, simply

because one believes that (1) it will be useful to others as an artifact and (2) one will learn more

by actually building it. As should be clear from our tone, while we see all threetypes of systems

research as valuable in their own right, it is this third type that excites us most. While it can be

painful at times—the Bamboo [RGRK04] and OpenDHT [RGK+05] papers, for example, were

each rejected twice from top conferences before being accepted—it is also very rewarding. We

cannot overstate the simple joy of a successful demo, for example.

134

Appendix A

The Storage Tree

Recall from Chapter 5 that for any timetnow, we can produce a function,f (τ), which

represents the expected number of bytes in the system at a future timetnow+ τ, assuming that new

puts continue to be stored at a minimum ratermin:

f (τ) = B(tnow)−D(tnow, tnow+ τ)+ rmin× τ

The first two terms represent the currently committed storage that will still be ondisk at timetnow+τ.

The third term is the minimal amount of storage that we want to ensure can be accepted between

tnow andtnow+ τ. A new put with sizex and TTL` that arrives at timetnow can be accepted if and

only if the following condition holds for all 0≤ τ≤ `:

f (τ)+x≤C.

If the put is accepted, the functionf (τ) must be updated, otherwise, we would like to compute at

what time in the future we will be able to accept the put. In this appendix we justifythe claim from

Chapter 5 that these computations can be performed in time logarithmic in the number of puts in

the system at any time.

A.1 The Storage Tree

Our technique is to build a tree whose leaves represent the inflection points of f (τ). This

data structure has three primary functions:

135

• shiftTime(n, tnow, rmin, t ′now) takes the treen that representsf (τ) over the time period[tnow,

tnow+ T] and returns a new tree that representsf (τ) over the time period[t ′now, t
′
now+ T],

whereT is the maximum TTL in the system andt ′now≥ tnow.

• nextAccept(n, tnow, rmin,C,x, `) takes the treen that representsf (τ) over the time period[tnow,

tnow+ T] and returns at what time in the future we will be able to accept a put of sizex and

TTL `, given the maximum size of the disk,C.

• addPut(n, tnow, rmin, `,x) takes the treen that representsf (τ) over the time period[tnow, tnow+

T] and returns a new tree over the same time period that also encompasses a putof sizex and

TTL ` accepted at timetnow.

Given these functions, the FST algorithm is as described in Chapter 5: we compute which put we

are going to accept next based on fair sharing concerns, shift time in thestorage tree to the current

time, compute at what future time we can accept the put, sleep until that time, shiftthe storage tree’s

time once more, add the put to the tree, send an accept message to the client, and loop.

A.2 The Basic Data Structure

Each node in the tree has eight fields:offset,value, low,high,height,valid, left, andright.

The meaning of a noden is that the maximum value of the functionf (τ) in the range[n.low,n.high]

is equal ton.value+ n.offsetplus the sum of the offsets ofn’s parents in the tree. In this way, the

sumvalue+offsetat the root of the tree is equal to the maximum value off (τ) for all 0≤ τ≤ T.

The tree is implemented as follows. We usenil to represent an empty tree—in other

words, a tree that represents no puts. Otherwise, every node in the treeis either a leaf or has two

children. In a leaf, it is always the case that

• left = right = nil

• low = high

• height= 1

• value= 0

In other words, leaves have no children, they are always at the lowestlevel of the tree, and they

represent a single point in time,low. The valid flag is used to remove nodes from the tree as

described below.

136

In an interior node,left andright are the children, and it is always the case that

• low = left.low

• high= right.high

• height= 1+max(left.height, right.height)

• value= max(left.valid?left.offset+ left.value: 0, right.valid?right.offset+ right.value: 0)

In other words, an interior node represents the combined time range of its children, and its height

is one greater than the height of the highest child. Thevalueof an interior node represents the

maximumvalue+offsetof its valid children, or zero if both children are invalid.

All procedures that operate on the storage tree are functional in nature; once created, a

node in the tree can never be changed. We define the following constructors:

• makeLeaf(offset, t) — creates a leaf with the given offset,high= low = t, andvalid = true.

• makeParent(offset, left, right) — creates an interior node with the given offset and children,

which satisfies the restrictions on interior nodes specified above, and wherevalid= left.valid∨
right.valid.

• incrementOffset(n, i) — creates a noden′ identical ton except thatn′.offset= n.offset+ i.

• invalidate(n) — creates a noden′ identical ton except thatn′.valid = false.

There are no other node constructors.

A.3 The Storage Tree Functions

In order to ensure that all operations on the storage tree are efficient, we maintain the

invariant that the tree is balanced. Specifically, for every interior node we ensure that

|left.height− right.height| ≤ 1.

For convenience, we define for each node a virtual field,balanced, that is true if and only if the

above condition holds (and that is always true for a leaf node). To balance a (sub)tree that has

become unbalanced due to an insertion, we use Algorithms 1–3. These functions are no more than

the usual balancing functions for an AVL tree, except that they are extended to respect the semantics

137

of theoffsets while rotating. In particular, as in an AVL tree, using these balancing functions does

not effect the logarithmic cost of an insertion into the tree.

We next introduce three auxiliary functions as Algorithms 4–6. createPoint(n, rmin, t) adds

a new leaf at timet to an existing treen. The value off represented by the tree is unchanged. We

use createPoint, for example, when we want to increment or decrementf over a range of times and

we want to make sure that the endpoints of this range are represented as leaves in the tree. Except

that it maintains the semantics ofoffset, valid, etc. in the tree, createPoint is identical to the insert

function of an AVL tree, and thus has a logarithmic running time.

Our next auxiliary function is incrementRange(n, l ,h, i), which increments theoffsets on

the minimal set of nodes that cover only the range of times[l ,h]. In particular, the treen must

already have leaves with timesl andh for incrementRange to succeed. incrementRange follows at

most two paths down and back up the tree: one corresponding to timel and the other to timeh, and

thus has a logarithmic running time as well.

Our final auxiliary function is invalidateRange(n, l ,h, i), which is identical to

incrementRange except that rather than modifying theoffsetfields of nodes, it sets theirvalid flags

to false.

We are now ready to introduce addPut and shiftTime as Algorithms 7–8. As described

above, addPut(n, tnow, rmin, `,x) adds a put of sizex and TTL ` to the treen. The code for addPut

is best understood visually, as illustrated in Figure A.1. The three calls to either makeLeaf or

createPoint are creating the three inflection points needed to represent aput with sizex and TTL`.

In the case where the tree was initially empty, we just add parents over these leaves in a balanced

way, and in the case where we have an existing tree, we just call incrementRange along the length

of the put after creating the necessary points. addPut does not loop, and it simply calls several

logarithmic-time functions in sequence, so it takes logarithmic time itself.

As described above, shiftTime(n, tnow, rmin, t ′now) shifts the time represented by treen from

[tnow, tnow+ T] to [t ′now, t
′
now+ T]. First, it creates a point fort ′now. Then, it invalidates all nodes

beforet ′now. Finally, it decrements the value off by rmin(t ′now− tnow). The reason for this latter

operation is best understood visually; looking again at Figure A.1, we aremoving the liney = rminx

(which represents expected future puts) from its current intersection with the x axis at 0 to a new

intersection att ′now− tnow.

One problem with shiftTime as specified is that it never removes any nodes from the tree.

How, then, does the tree ever get smaller? As discussed above, createPoint is little more than an AVL

tree insert operation. Since it inserts only one point, it disrupts the tree’s balance by at most one, and

138

Algorithm 1 Rotate right.
rotateRight(n)

return makeParent(n.offset,
incrementOffset(n.left.left,n.left.offset),
makeParent(0, incrementOffset(n.left.right,n.left.offset),n.right))

Algorithm 2 Rotate left.
rotateLeft(n)

return makeParent(n.offset,
makeParent(0,n.left, incrementOffset(n.right.left,n.right.offset)),
incrementOffset(n.right.right,n.right.offset))

Algorithm 3 Balance the tree.
balance(n)

if n = nil ∨n.left = nil ∨n.balancedthen
return n

else
if n.left.height> n.right.heightthen

if n.left.left.height> n.left.right.heightthen
return rotateRight(n)

else
return rotateRight(makeParent(n.offset, rotateLeft(n.left),n.right))

end if
else

if n.right.right.height> n.right.left.heightthen
return rotateLeft(n)

else
return rotateLeft(makeParent(n.offset,n.left, rotateRight(n.right)))

end if
end if

end if

C

now tnow

f(tau)
rmin

inflection pointx

l +T
0

t

Figure A.1: addPut visualized.

139

Algorithm 4 Add a new inflection point to the tree.
createPoint(n, rmin, t)

if n.left = nil then
if n.low = t then

return n
else ift < n.low then

return makeParent(0,makeLeaf(n.offset+n.rmin(n.low− t), t),n)
else

return makeParent(0,n,makeLeaf(n.offset+n.rmin(t−n.low), t))
end if

else
if t ≤ n.left.high then

return balance(makeParent(n.offset,balance(createPoint(n.left, rmin, t)),n.right))
else

return balance(makeParent(n.offset,n.left,balance(createPoint(n.right, rmin, t))))
end if

end if

Algorithm 5 Increment the offsets for a range of time.
incrementRange(n, l ,h, i)

if l > n.high∨h < n.low then
return n

else if l ≤ n.low∧h≥ n.high then
return incrementOffset(n, i)

else
return makeParent(n.offset, incrementRange(n.left, l ,h, i), incrementRange(n.right, l ,h, i))

end if

Algorithm 6 Invalidate a range of time.
invalidateRange(n, l ,h)

if l > n.high∨h < n.low then
return n

else if l ≤ n.low∧h≥ n.high then
return invalidate(n)

else
return makeParent(n.offset, invalidateRange(n.left, l ,h), invalidateRange(n.right, l ,h))

end if

140

therefore it can be rebalanced just as in an AVL tree. AVL trees also have a remove function that

keeps the tree balanced, but shiftTime invalidates many nodes at once. As such, were it to remove

the nodes directly, it might create a tree with an imbalance greater than 1 (i.e., theleft subtree of a

node might have aheight two greater than the right subtree). To circumvent this problem, instead

of removing nodes from the tree, we merely mark them as notvalid in shiftTime. Then, whenever

the entire left subtree of the root is notvalid, we remove it and promote the right subtree to the root.

To do this, we introduce the shiftTimeRoot function, shown as Algorithm 9, which is always used

instead of shiftTime when shifting the time covered by the root of the tree.

We are finally ready to introduce our last top-level function for the storage tree, nextAccept,

as Algorithm 10. As described above, nextAccept(n, tnow, rmin,C,x, `) returns at what time in the fu-

ture we will be able to accept a put of sizex and TTL`. nextAccept is implemented as binary search

of the times betweent andt +x/rmin. (We know we can accept the put at timet +x/rmin.)

Since nextAccept calls addPut and shiftTimeRootO(logm) times, wherem is the maxi-

mum value ofx/rmin, the running time of nextAccept isO(logmlogp), wherep is the number of

puts stored in the system. However, sincem is also the maximum time the put at the head of the

queue will wait before being accepted, there is a desire to keepmsmall. In OpenDHT, we do this by

bounding the maximum put size. If we also bound the minimum ratermin, thenm is also bounded,

and hence the running time of nextAccept is merely logarithmic in the number of puts accepted.

A.4 Status

The storage tree is implemented as described in this chapter and was used forthe FST

simulations in Chapter 5. It is not yet deployed on PlanetLab, however.

141

Algorithm 7 Add a put to the tree.
addPut(n, tnow, rmin, `,x)

if n = nil then
a←makeLeaf(x, tnow)
b←makeLeaf(x+ rmin(`−1), tnow+ `−1)
c←makeParent(0,a,b)
d←makeLeaf(rmin`, tnow+ `)
return makeParent(0,c,d)

else
a← createPoint(n, rmin, tnow)
b← createPoint(a, rmin, tnow+ `−1)
c← createPoint(b, rmin, tnow+ `)
return incrementRange(n, tnow, tnow+ `−1,x)

end if

Algorithm 8 Shift the tree to represent only nodes fromt ′now onwards.

shiftTime(n, tnow, rmin, t ′now)

if n = nil then
return n

else
a← createPoint(n, rmin, t ′now)
b← invalidateRange(n, tnow, t ′now−1)
c← incrementRange(b, t ′now,∞,−rmin(t ′now− tnow))
if n.left = nil ∧n.value= 0∧n.offset= 0 then

return nil
else

return n
end if

end if

Algorithm 9 Shift the tree to represent only nodes fromt ′now onwards; for use on the tree root only.

shiftTimeRoot(n, tnow, rmin, t ′now)

n′← shiftTime(n, tnow, rmin, t ′now)
if n = nil ∨n.left.valid then

return n
else

return incrementOffset(n.right,n.offset)
end if

142

Algorithm 10 Returns at what time in the future we will be able to accept a put of sizex and TTL`.
nextAccept(n, tnow, rmin,C,x, `)

n′← addPut(n, tnow, rmin, `,x)
if n.offset+n.value≤C then

return tnow

else
h← tnow+(x−1)/rmin+1
l ← tnow

while h− l > 1 do
t← l +(h− l)/2
n′← addPut(shiftTimeRoot(n, tnow, rmin, t), t, rmin, `,x)
if n.offset+n.value≤C then

h← t
else

l ← t
end if

end while
return h

end if

143

Bibliography

[ABKM01] David Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert Morris. Resilient

overlay networks. InProceedings of the ACM Symposium on Operating Systems Prin-

ciples (SOSP), 2001.

[B+04] A. Bavier et al. Operating system support for planetary-scale network services. InPro-

ceedings of the USENIX Symposium on Design and Implementation (NSDI), March

2004.

[bit] Bittorrent goes trackerless: Publishing with bittorrent gets easier!http://www.

bittorrent.com/trackerless.html.

[BMP03] Micah Beck, Terry Moore, and James S. Plank. An end-to-end approach to globally

scalable programmable networking. InFDNA, 2003.

[BN84] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls.ACM

Transactions on Computer Systems (TOCS), 2(1):39–59, 1984.

[BR03] Charles Blake and Rodrigo Rodrigues. High availability, scalable storage, dynamic

peer networks: Pick two. InProceedings of the USENIX Workshop on Hot Topics in

Operating Systems (HOTOS), 2003.

[BSS91] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic group

multicast.ACM Transactions on Computer Systems, 9(3):272–314, August 1991.

[BSV03] Ranjita Bhagwan, Stefan Savage, and Geoffrey Voelker. Understanding availability. In

Proceedings of the International Workshop on Peer-to-Peer Systems(IPTPS), Febru-

ary 2003.

144

[BSW05] Hari Balakrishnan, Scott Shenker, and Michael Walfish. Peering peer-to-peer

providers. InProceedings of the International Workshop on Peer-to-Peer Systems

(IPTPS), February 2005.

[BTC+04] Ranjita Bhagwan, Kiran Tati, Yu-Chung Cheng, Stefan Savage, andGeoff M. Voelker.

Total Recall: System support for automated availability management. InProceedings

of the USENIX Symposium on Design and Implementation (NSDI), 2004.

[Cat03] Josh Cates. Robust and efficient data management for a distributed hash table. Mas-

ter’s thesis, Massachusetts Institute of Technology, May 2003.

[CCR03a] M. Castro, M. Costa, and A. Rowstron. Performance and dependability of structured

peer-to-peer overlays. Technical Report MSR-TR-2003-94, Microsoft, 2003.

[CCR03b] Miguel Castro, Manuel Costa, and Antony Rowstron. Performance and dependability

of structured peer-to-peer overlays. Technical Report MSR-TR-2003-94, December

2003.

[CDK+03a] M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. Split-

Stream: High-bandwidth multicast in a cooperative environment. InProceedings of

the ACM Symposium on Operating Systems Principles (SOSP), 2003.

[CDK+03b] Russ Cox, Frank Dabek, Frans Kaahoek, Jinyang Li, and Robert Morris. Practical,

distributed network coordinates. InProceedings of the ACM Workshop on Hot Topics

in Networks (HotNets), 2003.

[CDKR02] M. Castro, P. Druschel, A-M. Kermarrec, and A. Rowstron. One ring to rule them

all: Service discovery and binding in structured peer-to-peer overlay networks. In

Proceedings of the ACM SIGOPS European Workshop, September 2002.

[CJK+03] Miguel Castro, Michael B. Jones, Anne-Marie Kermarrec, Anthony Rowstron, Marvin

Theimer, Helen Wang, and Alec Wolman. An evaluation of scalable application-level

multicast built using peer-to-peer overlays. InProceedings of the Annual Joint Confer-

ence of the IEEE Computer and Communications Societies (INFOCOM), April 2003.

[CLL02] Jacky Chu, Kevin Labonte, and Brian Neil Levine. Availability and locality measure-

ments of peer-to-peer file systems. InProc. of ITCom: Scalability and Traffic Control

in IP Networks, July 2002.

145

[CMM02] Russ Cox, Athicha Muthitacharoen, and Robert Morris. Serving DNS using a peer-

to-peer lookup service. InProceedings of the International Workshop on Peer-to-Peer

Systems (IPTPS), 2002.

[CRL03] Miguel Castro, Rodrigo Rodrigues, and Barbara Liskov. BASE: Using abstraction

to improve fault tolerance.ACM Transactions on Computer Systems (TOCS), 21(3),

August 2003.

[CRR+05] Yatin Chawathe, Sriram Ramabhadran, Sylvia Ratnasamy, Anthony LaMarca, Scott

Shenker, and Joseph Hellerstein. A case study in building layered dht applications. In

Proceedings of ACM SIGCOMM, August 2005.

[DC99] Kenneth J. Duda and David R. Cheriton. Borrowed-virtual-time (BVT) scheduling:

supporting latency-sensitive threads in a general-purpose scheduler. In Proceedings of

the ACM Symposium on Operating Systems Principles (SOSP), 1999.

[DG04] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large

clusters. InProceedings of USENIX Symposium on Operating System Design and

Implementation (OSDI), 2004.

[DGH+87] A. J. Demers, D. H. Greene, C. Hauser, W. Irish, J. Larson, S.Shenker, H. Sturgis,

D. Swinehart, and D. Terry. Epidemic algorithms for replicated database maintenance.

In Proceedings of ACM Symposium on Principles of Distributed Computing (PODC),

1987.

[DKK +01] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica. Wide-

area cooperative storage with CFS. InProceedings of the ACM Symposium on Oper-

ating Systems Principles (SOSP), October 2001.

[DKS89] A. Demers, S. Keshav, and S. Shenker. Analysis and simulationof a fair queuing

algorithm. InProceedings of ACM SIGCOMM, 1989.

[DLS+04] Frank Dabek, Jinyang Li, Emil Sit, James Robertson, M. Frans Kaashoek, and Robert

Morris. Designing a DHT for low latency and high throughput. InProceedings of the

USENIX Symposium on Design and Implementation (NSDI), 2004.

[Dou02] John Douceur. The Sybil attack. InProceedings of the International Workshop on

Peer-to-Peer Systems (IPTPS), 2002.

146

[DR01] P. Druschel and A. Rowstron. Storage management and cachingin PAST, a large-

scale, persistent peer-to-peer storage utility. InProceedings of the ACM Symposium

on Operating Systems Principles (SOSP), 2001.

[DS] Frank Dabek and Emil Sit. Personal communication.

[DZD+03] Frank Dabek, Ben Zhao, Peter Druschel, John Kubiatowicz, and Ion Stoica. Towards

a common API for structured P2P overlays. InProceedings of the International Work-

shop on Peer-to-Peer Systems (IPTPS), 2003.

[edo] eDonkey2000 – Overnet.http://www.edonkey2000.com/.

[FFM04] Michael J. Freedman, Eric Freudenthal, and David Mazières. Democratizing content

publication with Coral. InProceedings of the USENIX Symposium on Design and

Implementation (NSDI), March 2004.

[fre] Freepastry.http://freepastry.rice.edu/.

[fre05] Freepastry release notes.http://freepastry.rice.edu/FreePastry/README-1.

4.1.html, May 2005.

[GBL+03] Indranil Gupta, Kenneth Birman, Prakash Linga, Al Demers, and Robbert Van Re-

nesse. Kelips: building an efficient and stable P2P DHT through increased memory

and background overhead. InProceedings of the International Workshop on Peer-to-

Peer Systems (IPTPS), February 2003.

[GDS+03] Krishna P. Gummadi, Richard J. Dunn, Stefan Saroiu, Steven D. Gribble, Henry M.

Levy, and John Zahorjan. Measurement, modeling, and analysis of a peer-to-peer

file-sharing workload. InProceedings of the ACM Symposium on Operating Systems

Principles (SOSP), October 2003.

[GGG+03] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica. The

impact of DHT routing geometry on resilience and proximity. InProceedings of ACM

SIGCOMM, August 2003.

[GLR04] A. Gupta, B. Liskov, and R. Rodrigues. Efficient routing forpeer-to-peer overlays. In

Proceedings of the USENIX Symposium on Design and Implementation (NSDI), 2004.

147

[GLS+04] Brighten Godfrey, Karthik Lakshminarayanan, Sonesh Surana, Richard M. Karp, and

Ion Stoica. Load balancing in dynamic structured P2P systems. InProceedings of

the Annual Joint Conference of the IEEE Computer and Communications Societies

(INFOCOM), 2004.

[GMG+02] Krishna P. Gummadi, Harsha V. Madhyastha, Steven D. Gribble, Henry M. Levy,

and David Wetherall. Improving the reliability of Internet paths with one-hop source

routing. InProc. OSDI, 2002.

[gnu] Gnutella.http://www.gnutella.com/.

[GS03] Steven Gerding and Jeremy Stribling. Examining the tradeoffs of structured overlays

in a dynamic non-transitive network, 2003. Class project:http://pdos.lcs.mit.

edu/∼strib/doc/networkingfall2003.pdf.

[GVC96] P. Goyal, H.M. Vin, and H. Cheng. Start-time fair queuing: A scheduling algorithm for

integrated services packet switching networks. InProceedings of ACM SIGCOMM,

August 1996.

[HHL+03] Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Boon Thau Loo, Scott Shenker,

and Ion Stoica. Querying the Internet with PIER. InProceedings of the International

Conference on Very Large Data Bases (VLDB), 2003.

[HKRZ02] Kirsten Hildrum, John D. Kubiatowicz, Satish Rao, and Ben Y. Zhao. Distributed

object location in a dynamic network. InProceedings of ACM Symposium on Parallel

Algorithms and Architectures (SPAA), 2002.

[ine] Inet topology generator.

http://topology.eecs.umich.edu/inet/.

[JK88] Van Jacobson and Michael J. Karels. Congestion avoidance and control. InProceed-

ings of ACM SIGCOMM, 1988.

[JSBM01] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert Morris. DNS performance

and the effectiveness of caching. InProceedings of the ACM SIGCOMM Internet

Measurement Workshop, 2001.

[JT75] Paul R. Johnson and Robert H. Thomas. The maintenance of duplicate databases.

Arpanet RFC 677, January 1975.

148

[KBC+00] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton, Dennis

Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westley Weimer,

Chris Wells, and Ben Zhao. Oceanstore: An architecture for global-scale persistent

storage. InProceedings of the ACM Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS), 2000.

[KHFP03] Eddie Kohler, Mark Handley, Sally Floyd, and Jitendra Padhye. Data-

gram congestion control protocol (DCCP).http://www.icir.org/kohler/dcp/

draft-ietf-dccp-spec-04.txt, June 2003.

[KK03] Frans Kaashoek and David R. Karger. Koorde: A simple degree-optimal hash table.

In Proceedings of the International Workshop on Peer-to-Peer Systems(IPTPS), 2003.

[KKD01] David Kempe, Jon Kleinberg, and Alan Demers. Spatial gossip and resource location

protocols. InProceedings of the ACM Symposium on Theory of Computing (STOC),

July 2001.

[KR04] David R. Karger and Matthias Ruhl. Diminished Chord: A protocol for heterogeneous

subgroup formation in peer-to-peer networks. InProceedings of the International

Workshop on Peer-to-Peer Systems (IPTPS), 2004.

[KRRS04] Brad Karp, Sylvia Ratnasamy, Sean Rhea, and Scott Shenker. Spurring adoption of

DHTs with OpenHash, a public DHT service. InProceedings of the International

Workshop on Peer-to-Peer Systems (IPTPS), 2004.

[LCH+05] Boon Thau Loo, Tyson Condie, Joseph Hellerstein, Petros Maniatis,Timothy Roscoe,

and Ion Stoica. Implementing declarative overlays. InProceedings of the ACM Sym-

posium on Operating Systems Principles (SOSP), 2005.

[LHSH04] Boon Thau Loo, Ryan Huebsch, Ion Stoica, and Joseph Hellerstein. The case for a

hybrid P2P search infrastructure. InProceedings of the International Workshop on

Peer-to-Peer Systems (IPTPS), 2004.

[LMR02] Nancy Lynch, Dahlia Malkhi, and David Ratajczak. Atomic data access in content

addressable networks. InProceedings of the International Workshop on Peer-to-Peer

Systems (IPTPS), 2002.

149

[LNBK02] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysisof the evolution of peer-

to-peer systems. InProceedings of ACM Symposium on Principles of Distributed

Computing (PODC), July 2002.

[LSG+04] Jinyang Li, Jeremy Stribling, Thomer M. Gil, Robert Morris, and FransKaashoek.

Comparing the performance of distributed hash tables under churn. InProceedings of

the International Workshop on Peer-to-Peer Systems (IPTPS), 2004.

[LSM+05] Jinyang Li, Jeremy Stribling, Robert Morris, M. Frans Kaashoek, and Thomer M.

Gil. A performance vs. cost framework for evaluating DHT design tradeoffs under

churn. InProceedings of the Annual Joint Conference of the IEEE Computer and

Communications Societies (INFOCOM), 2005.

[LSMK05] Jinyang Li, Jeremy Stribling, Robert Morris, and M. Frans Kaashoek. Bandwidth-

efficient management of DHT routing tables. InProceedings of the USENIX Sympo-

sium on Design and Implementation (NSDI), 2005.

[M+03] Alan Mislove et al. POST: a secure, resilient, cooperative messagingsystem. In

Proceedings of the USENIX Workshop on Hot Topics in Operating Systems (HOTOS),

2003.

[MCM01] A. Muthitacharoen, B. Chen, and D. Mazières. A low-bandwidth network file sys-

tem. InProceedings of the ACM Symposium on Operating Systems Principles (SOSP),

2001.

[MCR03] Ratul Mahajan, Miguel Castro, and Antony Rowstron. Controlling the cost of re-

liability in peer-to-peer overlays. InProceedings of the International Workshop on

Peer-to-Peer Systems (IPTPS), February 2003.

[MD88] Paul V. Mockapetris and Kevin J. Dunlap. Development of the domain name system.

In Proceedings of ACM SIGCOMM, 1988.

[Mer88] R. Merkle. A digital signature based on a conventional encryption function. In Carl

Pomerance, editor,Proceedings of the Annual International Cryptology Conference

(CRYPTO), pages 369–378. Springer-Verlag, 1988.

150

[MGM05] Athicha Muthitacharoen, Seth Gilbert, and Robert Morris. Etna:A fault-tolerant algo-

rithm for atomic mutable DHT data. Technical Report MIT-LCS-TR-993, MIT LCS,

June 2005.

[mit] Chord. http://www.pdos.lcs.mit.edu/chord/.

[MM02] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer information sys-

tem based on the XOR metric. InProceedings of the International Workshop on Peer-

to-Peer Systems (IPTPS), 2002.

[MMGC02] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy: A read/write peer-to-peer

file system. InProceedings of USENIX Symposium on Operating System Design and

Implementation (OSDI), 2002.

[MNJH04] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson.Host identity protocol (work

in progress). IETF Internet Draft, 2004.

[NL97] Jason Nieh and Monica S. Lam. The design, implementation and evaluation of

SMART: A scheduler for multimedia applications. InProceedings of the ACM Sym-

posium on Operating Systems Principles (SOSP), 1997.

[Pax97] Vern Paxson.Measurements and Analysis of End-to-End Internet Dynamics. PhD

thesis, University of California, Berkeley, 1997.

[Pit87] Boris Pittel. On spreading a rumor.SIAM J. Applied Math, 47, 1987.

[PRR97] C. Plaxton, R. Rajaraman, and A. Richa. Accessing nearby copies of replicated ob-

jects in a distributed environment. InProceedings of ACM Symposium on Parallel

Algorithms and Architectures (SPAA), June 1997.

[PST+97] Karin Petersen, Mike Spreitzer, Douglas Terry, Marvin Theimer, and Alan Demers.

Flexible update propagation for weakly consistent replication. InProceedings of the

ACM Symposium on Operating Systems Principles (SOSP), 1997.

[Rab81] M. O. Rabin. Fingerprinting by random polynomials. Technical Report TR-15-81,

Center for Research in Computing Technology, Harvard University, 1981.

[RD01] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing

for large scale peer-to-peer systems. InIFIP/ACM Middleware, November 2001.

151

[REG+03] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weatherspoon, BenZhao, and John

Kubiatowicz. Pond: the OceanStore prototype. InProceedings of the USENIX Con-

ference on File and Storage Technologies (FAST), March 2003.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, andScott Shenker. A

scalable content-addressable network. InProceedings of ACM SIGCOMM, August

2001.

[RGK+05] Sean Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz, Sylvia Ratnasamy, Scott

Shenker, Ion Stoica, and Harlan Yu. OpenDHT: A public DHT service and its uses.

In Proceedings of ACM SIGCOMM, August 2005.

[RGRK03] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling churn

in a DHT. Technical Report UCB//CSD-03-1299, University of California, Berkeley,

December 2003.

[RGRK04] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling churn

in a DHT. InProceedings of the USENIX Annual Technical Conference, June 2004.

[RH03] Timothy Roscoe and Steven Hand. Palimpsest: Soft-capacity storage for planetary-

scale services. InProceedings of the USENIX Workshop on Hot Topics in Operating

Systems (HOTOS), May 2003.

[Rhe03a] Sean Rhea. Epidemic algorithms at work. OceanStore Developers Mail-

ing List, April 2003. https://oceanstore.cs.berkeley.edu/mailarchive/

oceanstore.0304/0012.html.

[Rhe03b] Sean Rhea. Re: Epidemic algorithms at work. OceanStore Developers Mail-

ing List, April 2003. https://oceanstore.cs.berkeley.edu/mailarchive/

oceanstore.0304/0013.html.

[RHKS01] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker. Application-level

multicast using content-addressable networks.Lecture Notes in Computer Science,

2233:14–29, 2001.

[RK04] Matthias Ruhl and David R. Karger. Simple efficient load balancingalgorithms for

peer-to-peer systems. InProceedings of the International Workshop on Peer-to-Peer

Systems (IPTPS), 2004.

152

[RKCD01] A. Rowstron, A-M. Kermarrec, M. Castro, and P. Druschel. SCRIBE: The design of a

large-scale event notification infrastructure. InNGC2001, 2001.

[RL03] Rodrigo Rodrigues and Barbara Liskov. Rosebud: A scalableByzantine-fault-tolerant

storage architecture. Technical Report TR/932, MIT CSAIL, December 2003.

[RLB03] Sean Rhea, Kevin Liang, and Eric Brewer. Value-based webcaching. InProceedings

of the International World Wide Web Conference (WWW), May 2003.

[ron] Ron latency data.http://nms.csail.mit.edu/ron/data/.

[RRHS04] Sriram Ramabhadran, Sylvia Ratnasamy, Joseph Hellerstein, and Scott Shenker. Brief

announcement: Prefix hash tree (extended abstract). InProceedings of ACM Sympo-

sium on Principles of Distributed Computing (PODC), 2004.

[RS04a] Venugopalan Ramasubramanian and Emin Gun Sirer. The design and implementation

of a next generation name service for the Internet. InProceedings of ACM SIGCOMM,

August 2004.

[RS04b] Venugopalan Ramasubramanian and Emin Gn Sirer. Beehive: O(1) lookup perfor-

mance for power-law query distributions in peer-to-peer overlays. InProceedings of

the USENIX Symposium on Design and Implementation (NSDI), 2004.

[rss] RSS protocol. Wikipedia.http://en.wikipedia.org/wiki/RSS (protocol).

[SAZ+02] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, and Sonesh Surana. Inter-

net indirection infrastructure. InProceedings of ACM SIGCOMM, August 2002.

[SCL+05] Jeremy Stribling, Isaac G. Councill, Jinyang Li, M. Frans Kaashoek,David R. Karger,

Robert Morris, and Scott Shenker. Overcite: A cooperative digital research library. In

Proceedings of the International Workshop on Peer-to-Peer Systems(IPTPS), 2005.

[SDR04] Emil Sit, Frank Dabek, and James Robertson. UsenetDHT: A low overhead Usenet

server. In Proceedings of the International Workshop on Peer-to-Peer Systems

(IPTPS), 2004.

[SGG02] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A measurement study

of peer-to-peer file sharing systems. InProceedings of Multimedia Computing and

Networking (MMCN), January 2002.

153

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.

Chord: A scalable peer-to-peer lookup service for Internet applications. InProceed-

ings of ACM SIGCOMM, August 2001.

[SMPD05] Daniel Sandler, Alan Mislove, Ansley Post, and Peter Druschel. FeedTree: Sharing

web micronews with peer-to-peer event notification. InProceedings of the Interna-

tional Workshop on Peer-to-Peer Systems (IPTPS), February 2005.

[Str] Jeremy Stribling. Planetlab all-pairs ping.http://www.pdos.lcs.mit.edu/

∼strib/pl app/APP README.txt.

[STZ04] Subhash Suri, Csaba Toth, and Yunhong Zhou. Uncoordinated load balancing and

congestion games in P2P systems. InProceedings of the International Workshop on

Peer-to-Peer Systems (IPTPS), 2004.

[SW00] Neil T. Spring and David Wetherall. A protocol-independent technique for eliminating

redundant network traffic. InProceedings of ACM SIGCOMM, 2000.

[SW02] Subhabrata Sen and Jia Wang. Analyzing peer-to-peer trafficacross large networks.

In Proceedings of the ACM SIGCOMM Internet Measurement Workshop, November

2002.

[VvRB02] Werner Vogels, Robbert van Renesse, and Ken Birman. The power of epidemics:

Robust communication for large-scale distributed systems. InProceedings of the ACM

Workshop on Hot Topics in Networks (HotNets), October 2002.

[VYW +02] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan Kostic,Jeff Chase,

and David Becker. Scalability and accuracy in a large-scale network emulator. In

Proceedings of USENIX Symposium on Operating System Design and Implementation

(OSDI), December 2002.

[WBS04] Michael Walfish, Hari Balakrishnan, and Scott Shenker. Untangling the Web from

DNS. In Proceedings of the USENIX Symposium on Design and Implementation

(NSDI), March 2004.

[ZDH+02] Ben Y. Zhao, Yitao. Duan, Ling Huang, Anthony D. Joseph, and John D. Kubiatowicz.

Brocade: Landmark routing on overlay networks. InProceedings of the International

Workshop on Peer-to-Peer Systems (IPTPS), March 2002.

154

[ZHS+04] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph, and

John D. Kubiatowicz. Tapestry: A resilient global-scale overlay for service deploy-

ment. IEEE Journal on Selected Areas in Communications, 22(1):41–53, January

2004.

[ZZJ+01] Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz, and John Ku-

biatowicz. Bayeux: An architecture for scalable and fault-tolerant wide-area data

dissemination. InNetwork and Operating System Support for Digital Audio and Video

(NOSSDAV), 2001.

