
ProbabilisticLocationandRouting
SeanC. Rhea,JohnKubiatowicz

Abstract—Weproposeprobabilistic location to enhancethe per-
formanceof existing peer-to-peer location mechanismsin the case
where a replica for the queried data item existscloseto the query
source. We intr oduce the attenuatedBloom filter, a lossy dis-
trib uted index. We describehow to usethesedata structur esfor
document location and how to maintain them despite document
motion. We include a detailed performancestudy which indicates
that our algorithm performs asdesired, both finding closer repli-
casand finding them faster than deterministic algorithms alone.

I . INTRODUCTION

Today’s exponentialgrowth in network bandwidthandstor-
agecapacityhasinspiredawholenew classof distributed,peer-
to-peerstorageinfrastructures. Systemssuch as Farsite [1],
Freenet[2], Intermemory[3], OceanStore[4], CFS [5], and
PAST [6] seekto capitalizeon therapidgrowth of resourcesto
provide inexpensive, highly-availablestoragewithout central-
izedservers.Thedesignersof thesesystemsproposeto achieve
high availability and long-termdurability in the faceof indi-
vidual componentfailuresthroughreplicationandcodingtech-
niques.

Althoughwide-scalereplicationhasthepotentialto increase
availability and durability, it introducestwo important chal-
lengesto systemarchitects. First, if replicasmay be placed
anywhere in the system,how shouldwe locate them? Sec-
ond, oncewe have locatedoneor more replicas,how should
we routequeriesto them? We canformulatethe combination
of thesetwo operationsasasinglelocationandroutingproblem
thatefficiently routesqueriesfrom aclient to theclosestreplica
adheringto certainproperties,suchasthereplicawith theshort-
estnetwork pathto theclientor thereplicaresidingontheleast
loadedserver. In many cases,combininglocationandrouting
into asingle,compoundoperationyieldsthegreatestflexibility
to routequeriesquickly with minimal network overhead.The
importanceof suchlocation-independentrouting techniquesis
well recognizedin thecommunity, andseveral proposalssuch
asCAN [7], Chord[8], Pastry [9], andTapestry[10] arecur-
rentlyunderstudy.

Theseexisting schemessharethe characteristicthat in the
worstcase,a locationandroutingoperationrequires

���������
	��
sequentialnetwork messagesto searcha distributedsystemof	

servers. Someof thesealgorithmsusesubstantiallyfewer
messagesto performtheir taskin thecommoncase.Thisscala-
bility is commendable,andit allows for thetotal queryrouting
time to be closeto optimal whenthe replica is far from the
querysource. However, asthereplicaapproachesthe location
of thequerysource,theperformanceof theexisting algorithms
quickly divergesfrom optimality. This divergenceis easyto

Appearsin INFOCOM 2002
S. RheaandJ. Kubiatowicz arewith theUniversityof California,Berkeley.

Email: srhea,kubitron� @cs.berkeley.edu

understand:a small amountof “mis-routing” in the local area
canleadto alargedivergencefrom optimality, sincetheoptimal
pathis shortto begin with.

Currently, suchsystemsmake only meagerattemptsto place
replicasfor network locality, and the sizesof the documents
they locateareon theorderof megabytes,so this poorperfor-
mancein locatingnearbyreplicasdoesnot significantlyaffect
overall documentretrieval time. However, in the OceanStore
system[4], we intendstoredocumentswhosesizesareassmall
asa few kilobytesandto go to greatlengthsto placethosedoc-
umentsneartheir query sources. In sucha situation,nearby
locationperformancecanbe a large componentof the overall
retrieval time.

In this paperwe presenta probabilistic locationandrouting
algorithmdesignedto enhancetheperformanceof existing de-
terministicwide-arealocationmechanisms.A probabilistical-
gorithmisonethatmayfail todiscoverareplicafor agivendoc-
umentevenwhensuchreplicasexist; for example,it mightfind
“nearby” replicaswith high probability, but fail if no replicais
nearby. Assumingthattheprobabilisticalgorithmfindsreplicas
quickly whenit can andfails quickly whenit cannot, we can
enhancethe performanceof the location and routing process
througha hybrid approach:first try theprobabilisticalgorithm,
thenfollow with thedeterministicalgorithmif needed.

Our probabilisticlocationandroutingalgorithmis basedon
attenuatedBloomfiltersandhasthefollowing properties:� It is decentralized. It requiresno centralpoint of control

andis thussuitablefor usein thepeer-to-peersystemsfor
which it is intended.� It is locality aware. If a querysite lies closeto a replica
for thequerieddocument,our algorithmfindsthatreplica
with highprobability.� It follows a minimal search path. With high probability,
our algorithm follows the shortestpathbetweena query
siteandthereplicathatsatisfiesthequery.� It usesconstantstorageperserver. Theamountof storage
usedat eachserver in thesystemis smallandconstantin
thenumberof documentsindexed.

This later propertyallows eachhop in the querypath to pro-
ceedwithout high-latency disk accesses,furtherenhancingthe
speedof operation.Whenusedwith a deterministicalgorithm,
attenuatedBloom filters allow us to achieve the “best of both
worlds”: quickly finding nearbyreplicaswhenthey exist, yet
findingevery documentevenwhenreplicasarescarce.

Figure1 shows the potentialof our technique. This graph
illustratesthe stretch of two possiblealgorithms:a real deter-
ministic algorithm(solid line) anda hybrid combinationof at-
tenuatedBloom filters with the samedeterministicalgorithm
(dottedline). In this context, stretch is a measureof the over-
headof location-independentrouting: it is the ratio of actual
time to routeaquerythroughtheinfrastructureversustheideal
network latency (on the underlyingIP network) to the closest

1

0

2

4

6

8

10

12

14

16

(0, 30) [30, 60) [60, 90) [90, 120) [120, 150) [150, 180)

R
ou

tin
g

S
tr

et
ch

�

Document Distance from Query Source (in 30 ms buckets)

Routing Stretch vs. Ideal Latency

Algorithm
Deterministic Alone

Hybrid

Fig.1. TheBig Picture. Stretchasafunctionof distancebetweenquerysource
andreplica. Stretch measuresthe overheadof combinedrouting andlocation
relative to ideal (network) latency–hence,lower is better. At shortdistances,
theroutingstretchof thedeterministicalgorithm(solid line) is greatlyreduced
whencoupledwith aprobabilisticalgorithm(dottedline).

replica.This graphwill befurtherdiscussedlater, but thebasic
messageis simple: attenuatedBloom filters reducelatency for
the short-distancecase,effectively smoothingout the overall
responsetime.

This papermakesthe following contributions. First, we in-
troduceattenuatedBloomfilters, datastructuresthat resideat
eachnodein thesystem.Wepresentthequeryalgorithm,which
routesqueriesfrom nodeto nodein searchof a replica,andthe
updatealgorithm,which propagateslocationinformationfrom
filter to filter. Second,we coupleattenuatedBloom filters with
two differentdeterministicwide-arealocationalgorithms. We
usea detailedperformancesimulationto explore the behavior
of thishybrid approachbothonarandom,staticarrangementof
replicasandon a dynamicallychangingallocationof replicas
modelingtraffic to Web caches.We show both that our prob-
abilistic algorithmfinds closerreplicasand that it finds them
fasterthan a deterministicalgorithm alone. Furthermore,we
show that theadditionalbandwidthrequiredby theprobabilis-
tic algorithmis reasonable.

The remainderof this paperis as follows. SectionII de-
scribesattenuatedBloom filters in detail. SectionIII presents
our simulationenvironment,andSectionIV describesour ex-
perimentalresults. SectionVI describesrelatedwork. Sec-
tion V postulatessomefuturework, andSectionVII concludes.

I I . ALGORITHM DESCRIPTION

In this sectionwe presentour probabilistic location algo-
rithm. This algorithmworks via an overlay network between
participatingservers.Eachserverhasasetof neighbors, chosen
from theparticipatingserversclosestto it in network latency. A
server associateswith eachneighbora probability of finding
eachdocumentin the systemthroughthat neighbor. This as-
sociationis maintainedin constantspaceusinga datastructure
we call an attenuatedBloomfilter. The setof theseprobabil-
ities forms a potentialfunction over the serversin the system;
locationis a simplematterof climbing this functionto a server
with thedesireddataitem.

In the following, we briefly summarizeBloom filters. We
continueby introducing attenuatedBloom filters, describing
their usefor replica location, then finish with algorithmsfor
updatingfilters asreplicasmove.

1 01 1 0 0 0 1 0
0 1 2 3 4 5 6 7 8

(‘‘Uncle John’s Band’’) = {0, 3, 7}hash

(‘‘Box of Rain’’) = {1, 3, 8}hash

width (w)

Fig. 2. A BloomFilter. An arrayof � bits that serve to summarizea setof
objects.To checkanobject’snameagainstaBloomfilter summary, thenameis
hashedwith � differenthashfunctions(here,�����) andthebitscorresponding
to theresultarecheckedin thefilter. In thispicture,therepresentedsetprobably
containsthe name“Uncle John’s Band”, sincebits 0, 3, and7 areall true. It
definitelydoesnot contain“Box of Rain”, however, sincebit 8 is false.

A. BloomFilters

Bloom filters are an efficient, lossy way of describing
sets[11]. A Bloomfilter is abit-vectorof length� with a fam-
ily of independenthashfunctions,eachof which mapsfrom
elementsof therepresentedsetto aninteger in � ����� � . To form
a representationof a set,eachsetelementis hashed,and the
bits in thevectorassociatedwith thehashfunctions’resultsare
set.To determinewhetherthesetrepresentedby a Bloom filter
containsa givenelement,thatelementis hashedandthecorre-
spondingbits in the filter areexamined. If any of the bits are
not set,the representedsetdefinitely doesnot containthe ob-
ject. If all of the bits areset, the setmaycontainthe object;
thereis a non-zeroprobability that it doesnot, however. This
caseis calleda falsepositive, and the falsepositive rateof a
Bloom filter is a well-defined,linear functionof its width, the
numberof hashfunctionsandthecardinalityof therepresented
set.Figure2 shows asampleBloomfilter.

If the cardinalityof the representedsetis a significantfrac-
tion of thewidth � , thentheBloomfilter becomesoverloaded:
therateof falsepositivesincreasesto thepoint that thefilter is
essentiallyuseless.Severalstudies,suchas[12], haveexplored
this phenomenon.In particular, the point at which approxi-
matelyhalf of the bits areset is an optimal tradeoff between
filter storageand accuracy; however, wider filters are always
moreaccurate.

B. AttenuatedBloomFilters

An attenuatedBloomfilter of depth � is an arrayof � nor-
mal Bloom filters. As mentionedearlier, we assumethateach
nodein thesystemhasa setof overlayneighborsparticipating
in the probabilistic location algorithm. In the context of our
algorithm,we associateeachneighborlink with an attenuated
Bloomfilter. Thefirst filter in thearraysummarizesdocuments
availablefrom thatneighbor(onehopalongthe link). The � th
Bloomfilter is themergerof all Bloomfiltersfor all of thenodes
a distance� throughany pathstartingwith that neighborlink,
wheredistanceis in termsof hopsin theoverlaynetwork1. Fig-
ure3 shows theattenuatedBloom filter thatNode � would as-
sociatewith Node � in thegivennetwork. For example,both
“Uncle John’sBand”and“SugarMagnolia”aretwo hopsaway
from Node � throughNode � , sothesecondlevel of filter "!"#
containstruevaluesatall bits in theunionof thosedocuments’
hashvalues(0, 2, 3, 5, 7).
$
The astutereadermight surmisethat all links endingin a particularnode

have thesameattenuatedfilter associatedwith them. This is true for now, but
will changewhenwe introduceselective updatesin SectionII-D.

2

FAB

width (w)

depth(d)

F
AB

{2, 5, 7}

Sugar
Magnolia

Rain
Box of

{1, 3, 8}

Ripple

{1, 6, 8}

Uncle
John’s
Band

{0, 3, 7}

B

A

DC

1 2 3 4 5 6 7 80

1/2

1/4

1/8

1
1

0100
1 0 1 0 0 00 10
0 1 1

0 01 1 1 10
1

0

Fig. 3. AttenuatedBloomFilters. An attenuatedBloom filter is anarrayof %
Bloom filters, eachof width � . Componentfilters arelabeledwith their level
in the array (top filter is level 1). Eachoutgoinglink (say, A & B) hasan
attenuatedfilter associatedwith it ('"(�)). Level 1 summarizesreplicason the
neighborat theendof thelink. Level 2 summarizesreplicasthataretwo-hops
away alongthat link, etc. We assigna potentialvalueto eachlevel (here

$* ,$+-,/.0./.). Higherlevelsarethusattenuatedwith respectto lower levels.

To mapfrom anattenuatedBloom filter to a potentialvalue,
onequerieseachlevel for a document’s name. The levels are
assignedgeometricallydecreasingpotentialvalues; the value
of thepotentialfunctionof a filter for a givendocumentis the
sum of all of the potential valuesfor the levels of the filter
which containthe document.For example,in !"# , the doc-
ument“Uncle John’s Band” would mapto the potentialvalue13254�6713258:9<;�258

, sinceit is reachablethroughNode � in two
andthreehops. We saythat higherfilter levels areattenuated
with respectto earlierfilter levels,hencethename“attenuated
Bloom filter”. We refer to filters with only onelevel asnonat-
tenuated.

C. TheQueryAlgorithm

As mentionedabove,weassociateanattenuatedBloomfilter
with eachoutgoingneighborlink. To performa locationquery,
the queryingnodeexaminesthe 1st level of eachof its neigh-
bors’attenuatedBloomfilters. If oneof thefiltersmatches,it is
likely that thedesireddataitem is only onehopaway, andthe
queryis forwardedto thematchingneighborclosestto thecur-
rentnodein network latency. If no filter matches,thequerying
nodelooks for a matchin the2nd level of every filter. As be-
fore,if amatchis found,thequeryis forwardedto thematching
neighborof lowestlatency. This time,however, it is not theim-
mediateneighborwhois likely to possessthedataitem,but one
of its neighbors.Thisnext neighboris determinedasbefore,by
examiningtheattenuatedBloomfilters of thecurrentserver.

A filter of depth� by definitionstoresinformationonly about
servers � hopsfrom the currentserver. For this reason,if a
querywere to reacha server � hopsfrom its sourcedue to a
falsepositive, there is no incentive to forward it further. In
otherwords,sincethequeryreachedtheparticularserver thatit
did througherror, any further informationaboutwhich nearby
serversmightcontainthedesireddataitemmaylikely beincor-
rectaswell. Whensuchcircumstancesarise,thereremaintwo
possibilitiesfor finding the dataitem. The probabilisticalgo-
rithm cansimply give up andforward therequestto thedeter-
ministicalgorithm,or thequerycanbereturnedto theprevious
server in thequerypathto besenton to thenext bestneighbor.
In thisway, thequeryalgorithmcomesto resembleadepth-first

searchwhich is guidedby thepotentialfunctionrepresentedby
theattenuatedBloomfilters.

Sincethepurposeof theprobabilisticalgorithmis to improve
latency in thecasewherenearbyreplicasexist,weview this lat-
tersolutionasoverreaching,sincethetimerequiredfor it in the
worstcaseis possiblyslower thanthedeterministicalgorithm,
with lesscertainresults.As aresult,wedonotallow backtrack-
ing, andafter � unsuccessfulhopswe immediatelydeferto the
deterministicalgorithm.

Finally, in situationswhere � is large, a falsepositive may
causea query to return to a server it hasalreadyvisited. For
this reason,eachquery in the systemcontainsa list of all of
theserversthatit hasvisitedsofar, andserversnever forwarda
queryto a server it hasalreadyvisited. Sincewe do not allow
backtracking,this list is at most � elementslong,sothecostof
thisoptimizationis small.

D. TheUpdateAlgorithm

For the query algorithm to be successful,the attenuated
Bloom filters at eachnodethatdirectqueriesmustbekeptup-
to-date.Every time a new dataitem is addedto a server, there
is a possibilitythattheBloom filter representingthesetof data
items it storeswill changeas well. If sucha changeoccurs,
neighborsof the server will only find the new dataitem if the
changeis propagated to them in somemanner. The way in
which thischangeis propagatedis theupdatealgorithm.

Thefundamentalobservationbehindtheupdatealgorithmis
that unlessthe Bloom filters are loadedto a degreesuchthat
they are no longer useful for location, an updateto a single
server in a systemwith filters of depth � should eventually
changeat leastone bit in the filters of every server within �
hopsof the updatesite. Ideally, this propagation is a single
wave spreadingfrom thesourceof thechangeoutward. More-
over, updatesdueto differentdataitemsinvolve only a small
numberof commonbits. Thus thereis little benefitto com-
bining updates,exceptto save on thenetwork costsassociated
with sendingmany small messagesinsteadof one large one.
We thereforeassumethatall updatesoccurindependently, ex-
ceptfor thepossibilitythatupdatesdestinedfor thesameserver
maybegroupedinto thesamenetwork message.

An updateproceedsasfollows. Every server in the system
storesboth an attenuatedBloom filter for eachoutgoinglink
(e.g. "!"# in Figure3), andacopy of its neighbor’sview of the
reversedirection. Whena new documentis stored,the server
calculatesthe changedbits in its own filter andin eachof the
filters its neighborsmaintainof it. It thensendsthesebits out
to eachneighbor;this is a form of diff compression. On receiv-
ing sucha message,eachneighborattenuatesthebits onelevel
andcomputesthe changesthey will make in eachof its own
neighbors’filters. Thesechangesarethensentoutaswell. One
canthusview anupdateasthesetof changedbits propagating
outwardfrom thesourceof thechange.

Oneproblemwith thisalgorithmascurrentlyspecifiedis that
unlesstheoverlaynetwork is a treerootedat theupdatesource,
theupdatewill bepropagatedto someserversmorethanonce,
wastingnetwork bandwidthandplacingredundantinformation
in thefilters of thereceiving node.For example,considerFig-
ure 3. If a documentwereaddedto Node = , Node � would
receive thecorrespondingupdatethreetimes: first from = di-
rectly, thenthrough� , andagain through� via > . This redun-
dancy wouldplaceunnecessaryloadonthenetwork. Moreover,

3

6F43

BA72

FA44

1D76

51E59C34 2A24

8224

7224L1

L1

L1

L1

L2

L2 L3

L4

Fig.4. TapestryRoutingMesh.Eachnodeis linkedtoothernodesvianeighbor
links, shown assolid arrows with labels.Labelsdenotewhich digit is resolved
during link traversal.Here,node7224 hasanL1 link to BA72, resolvingthe
first digit, anL2 link to FA44, resolvingtheseconddigit, etc.

it would needlesslyplaceinformationaboutthenew document
in all threelevels of "!"# . The lower levels of an attenuated
Bloom filter representthecombineddocumentsof many more
nodesthanthehigher-potentialones,sothis redundancy of in-
formationis quitedetrimentalto thefalsepositive rate.

We can thus imaginefiltering updatesto improve both the
bandwidthutilization andthe load on lower filter levels. This
filtering changestheinformationstoredin theattenuatedfilters,
thusalteringthesemanticsof thesefilters slightly. As we will
show in SectionIV, however, we cancontinueto usethequery
algorithmof SectionII-C andachieve lowerupdatebandwidth.

We describetwo distinctupdatefiltering algorithms;we call
the naive approachalreadydescribedthe no filtering case.To
filter, we tag all updateswith an identifier consistingof their
sourcenodeanda monotonicallyincreasingsequencenumber.
We thenperformthefollowing typesof filtering:� destinationfiltering: Destinationservers rememberthe

identifiersof every updatethey seefor a shortperiod,al-
lowing them to ignore subsequentarrivals of an update
throughdifferentpaths.This filtering preventsredundant
informationin thedestination’s neighborfilters.� sourcefiltering: Onceaserver receivesaduplicateupdate
from oneof its neighbors,it sendsamessageto thatneigh-
bor to inform it of this redundancy. The neighborstops
forwardingnew updatesfrom thatsamesource.

Bothof thesetechniquessavenetwork bandwidth.Thesecond,
however, is somewhat moresophisticated,sinceit performsa
form of topologydiscovery, squelchingupdatemessagesbefore
they areevensent.Theadditionalinformationstoredfor source
anddestinationfiltering is soft stateandis periodicallyflushed
soasto adaptto changesin theoverlaynetwork.

As a final point, we note that updatefiltering introducesa
bit of subtletywith respectto replicadeletions.Whena replica
deletioncausesbits at any level of a Bloom filter to transform
from one to zero, we must be careful to propagate this dele-
tion to all appropriatenodes.This may, in somecases,involve
ignoring updatefilters that have beenprevious installed. Fig-
ure16 in theAppendixdescribesthecompletealgorithm.

I I I . EXPERIMENTAL SETUP

To test the effectivenessandcostof our probabilisticalgo-
rithm, we simulatedit in conjunctionwith two differentdeter-
ministic algorithmsfor location-independentrouting. In this
sectionwe describethe deterministicalgorithms,thendiscuss
oursimulationenvironmentandexperiments.Theresultsof our
simulationareprovidedin SectionIV.

A. DeterministicLocationandRoutingAlgorithms

We usedtwo different deterministicalgorithmsto provide
our probabilisticalgorithmwith the greatestvariety of “com-
petition”. The first is home-nodelocation, an idealizedarchi-
tecturethat resemblesa combinationof DNS [13] and opti-
mized directory-basedcachecoherence[14]. The secondis
Tapestry[10], an actual distributed, wide-arealocation and
routinginfrastructurewith interestinglocality properties.

1) Home-NodeLocationOverview: Our first deterministic
algorithmpostulatesthat every documentin the systemhasa
home-nodeserverthat keepsa setof pointersto every replica
of thedocument.To routeaqueryto areplica,aclientsendsthe
queryto its homenode,which forwardsthequeryto thereplica
closestto theclient.

We chosethis architecturefor two reasons.First, it is a very
simple;aswe will seein thenext section,morerealisticarchi-
tecturesare far more complicated. Second,it is an idealized
form of directoryservice(suchasDNS), but with oracle-level
knowledgeof the network topology. In contrastto existing,
nonidealizedprotocolswhich routeto

�?���@�A�CBD�
randomlydis-

tributedlocationsin thenetwork to reacha document,this ide-
alizedalgorithmusesonly

��� 1 �
suchhops,andprovidesbetter

replicaplacementrelative to thequerysource.
Of course,several aspectsof this architectureareidealized.

We do not addressthetypeof infrastructurethata client would
utilize for finding thehome-nodeserver; we assumethatsome
form of document-to-home-nodemappingserviceis available.
Further, sincethis is a “best-casearchitecture”,we do not ad-
dresshow thedirectoryserverkeepsits informationaboutrepli-
cascurrent,or how it is ableto selectthereplicaclosestto the
querysource. The next sectiondetailsa distributeddirectory
techniquethatdoesnot requiretheseidealizations.

2) TapestryOverview: The wide-arealocation and rout-
ing infrastructureof OceanStoreis Tapestry[10], an IP over-
lay network with a distributed,fault-tolerantarchitecture.With
Tapestry, a queryis routedfrom nodeto nodeuntil thelocation
of a replica is discovered,at which point the query proceeds
to that replica. Tapestrydiffers from the home-nodearchitec-
ture in two distinctways: (1) Tapestrydistributesthedirectory
lookup processin a document-specificway. This removesthe
needfor aseparatedocument-to-home-nodemapping.(2) Once
Tapestryhasdiscoveredthe location of a replica, it forwards
thequeryto thereplicaclosestto thepoint of discovery, rather
than to the replica closestto the original query source. This
optimizesone-way latency from the query to the replica, but
maynot optimizesubsequenttraffic from replicabackto query
source.

Tapestrybegins with the assumptionthat every server and
documentin thesystemcanbenamedwith a unique,location-
independentidentifier, representedasa sequenceof hexideci-
mal digits. We will refer to node-IDsfor the nodenamesand
globallyuniqueidentifiers (GUIDs) for thedocuments.Among
other things, this meansthat every query hasa uniquedesti-
nationGUID. Tapestryhastwo major components:a routing
meshandadistributeddirectoryservice.

The Tapestryrouting meshis an overlay network between
participatingnodes. Figure 4 shows a portion of this mesh.
Every Tapestrynodeis connectedto otherTapestrynodesvia
neighborlinks of variouslevels. Level-1 edgesfrom a given
nodeconnectto the15 nodesclosest(in network latency) with

4

197E

F4B4

1634

A734

4664

EF34

8224

7734

D6A4

39AACE75 Band

Uncle

(8734)

John’s

Band

Uncle

(8734)

John’s

Fig. 5. Publication in Tapestry. To publishdocument8734, server 39AA
sendspublicationrequesttowardsthe root, leaving a pointer to itself at each
hop.Server8224 publishesits replicasimilarly.

differentvaluesin the lowestdigit of their addresses.Level-2
edgesconnectto the15 closestnodesthatmatchin the lowest
digit andhave differentseconddigits,etc.

Tapestryneighborlinks provide a routefrom every nodeto
every othernodein thesystem:simply resolve thedestination
nodeaddressonedigit at a time, usinga level-1 edgefor the
first digit, a level-2 edgefor the second,and so forth. This
routing schemeis basedon the hashed-suffix routing struc-
ture presentedby Plaxton,Rajaraman,andRicha[15]. While
theTapestryinfrastructureincludesalgorithmsfor building this
neighborgraphdynamically, we assumein this work that the
graphis built at the beginning of our simulationanddoesnot
change.

To performlocation-independentrouting,Tapestrydetermin-
istically mapseachdocumentGUID to a set of unique root
nodes2. In this paperwe assumea single root nodefor each
GUID. Thusevery uniquedocumentandqueryfor that docu-
mentis associatedwith a singleroot node-ID.We usetherout-
ing meshdescribedaboveto reachtheroot from any othernode
in thesystem;thisroutingprocessdefinesauniquelocationtree
for every choiceof rootnode.

Storageserverspublishthefactthatthey arestoringareplica
by routing a messagetoward the root node,depositingloca-
tion pointers to theobjectat eachhop. Figure5 illustratestwo
replicaswith thesameGUID (8734) exportedby servernodes
8224 and39AA. Locationpointersareshown asdottedarrows
backto servers. Note thatboth theroot note(7734) andnode
A734 have knowledgeof bothreplicas.

As shown in Figure6, queriesroutetowardtherootnodeun-
til they encountera locationpointer, thenrouteto the located
replica. If multiple pointersare encountered,the query pro-
ceedsto the closestreplica. The figure shows threedifferent
locationpaths.In theworstcase,a locationoperationinvolves
routingall theway to theroot. However, if thedesiredobjectis
closeto theclient,thenthequerypathwill intersectthepublish-
ing pathbeforereachingtheroot with high probability. In fact,
it is shown in [15] thattheaveragedistancetraveledin locating
*
Sincethe node-ID spaceis sparse,this cannotbe a one-to-onemapping.

Suffice it to saythat thereis a way to mapGUIDs to root node-IDs,evenwith
dynamicinsertionandremoval; see[10].

197E

F4B4

1634

A734

4664

EF34

8224

7734

D6A4

39AACE75

John’s

(8734)
Band

Uncle

John’s

(8734)
Band

Uncle

Fig. 6. Locationin Tapestry:Threedifferentlocationrequests.For instance,
to locateGUID 8734, querysource197E routestowardstheroot,checkingfor
apointerateachstep.At node1634, it encountersapointerto server1634.

anobjectis proportionalto thedistancefrom thatobject3.

B. SimulationEnvironment

Our simulatormodelsthephysicalnetwork asa graph,each
edgeof which hastwo valuesassociatedwith it, E net andF net.
To senda messagealonganedgetakes E net

6HG F net seconds,
where

G
is thesizeof themessagein bytes.To senda message

alonga pathof morethanonehoptakes EJInet
6KG FLInet seconds,

where EJInet is thesumof the E net valuesfor every edgealong
thepath,andFLInet is thelargestF netvalueof any edgealongthe
path. We do not measurequeuingeffectsor computationtime
at servers.

Using this simulator, we constructeda physical network
topology using the transit-stubmodel of GT-ITM [16]. This
topology mimics the structureof large networks observed in
natureby dividing the graphinto two classesof nodes,called
transitnodesandstubnodes.An exampletransit-stubgraphis
shown in Figure7. Transitnodesaregroupedinto highly con-
nectedtransitdomains,andoff eachtransitnodeseveral stub
domainsareconnected.Thesestubdomainsarecollectionsof
stubnodeswhicharegenerallymorelightly connectedthanthe
nodesin thetransitdomains.In additionto this generallayout,
thereare several inter-stub domainedgesin eachgraph. We
augmentthe GT-ITM model with bandwidthnumbersas fol-
lows. All stub to stubedgesare100 Mb/s, all stub to transit
edgesare1.5Mb/s,andall transitto transitedgesare45 Mb/s.
Thesevalueswerechosento modelFastEthernet,T1, andT3
connections,respectively. In ourexperiments,wefocusonstub
to transitdomainbandwidthconsumption,sincetheseinterdo-
main edgesarethe mostbandwidthconstrainedin the system
(andin mostrealsystemsaswell).

Our simulationsusetransit-stubgraphswith six transitdo-
mainsof tennodeseach.Eachtransitnodehassevenstubdo-
mainsof an averageof twelve nodeseach,yielding a total of
5,100nodespergraph.Thetransitdomainsarefully connected
to eachother, andeachpair of nodesinternalto a domainare
connectedwith probability0.6. Eachpair of stubnodeswithin
M
Experimentsshow asmallconstantof proportionality;See[10].

5

Transit
Domains

Physical Links Overlay Edges

Interdomain
Edges

Stub
Domains

Fig. 7. A Transit-StubGraph.This topologymimicsthestructureof largenet-
worksobservedin nature.Shown alsois anoverlaynetwork which minimizes
the numberof interdomainedgecrossings.Suchoverlaysallow the topology
discovery propertiesof thesourcefiltering algorithmto minimize interdomain
bandwidthconsumption.SeeSectionIV for details.

0

15

30

45

60

75

90

No Filtering Destination Filtering Source Filtering

C
um

ul
at

iv
e

K
ilo

by
te

s
pe

r
D

oc
um

en
t A

dd
ed

Cumulative Interdomain Bandwidth vs. Filtering Scheme

Nonattenuated
Filter depth = 2
Filter depth = 3

Fig. 8. UpdateBandwidthvs. UpdateAlgorithm. Updatebandwidthincludes
Tapestrymessagesand Bloom filter updates. The sourcefiltering algorithm
generallyusessignificantlylessbandwidththanno filtering or destinationfil-
tering.Neitherfiltering algorithmeffectsfiltersof depthone,sincea loopmust
exist for the algorithmsto filter anything. Likewise,destinationfiltering only
helpson loopsof threeor larger, soit hasnoeffectof filtersof depthtwo.

astubdomainareconnectedwith probability0.3.WeusedGT-
ITM to generatesevengraphsgiventheseparametersto insure
thatour resultswerenotdependenton theparticularitiesof any
onegraph.

On top of this physicalnetwork, we built Tapestryandprob-
abilistic locationoverlaynetworksasfollows. We chose1,000
of thetotal nodesin thegraphuniformly at randomwithout re-
placementandmadethemTapestryservers. We thenassigned
node-IDsto theseservers at random,and built the neighbor
graphasdescribedin SectionIII-A. In someexperiments,we
alsoattachedprobabilisticlocationserversto thesesamenodes,
using the constructionalgorithm describedin SectionII. Fi-
nally, in someexperimentswe further restrict the Bloom fil-
ter overlay network to have a minimal numberof interdomain
edges,while maintainingits averageconnectivity. The effects
of this restrictionaredescribedin SectionIV.

C. ExperimentDescriptions

In thiswork wedocumenttwo groupsof experiments,called
the static andthe dynamicexperiments,basedon whetherthe
setof replicasin thesystemchangesduringthetest.

In thestaticexperiments,we randomlyplace70 uniquefiles
on eachof the nodesin the systemwhich areparticipatingin
the location protocols. We chosethis small numberfor sim-
ulation simplicity; sincethe optimal sizeof the Bloom filters

scaleslinearly with thenumberof documentsindexed,our re-
sultsgeneralizein a straightforward manner. We allow for all
of the locationdirectoriesto beupdated,thenarrangefor each
participatingnodeto requesta differentsetof 12 documents,
randomlychosenfrom thefull set.We observe theaveragelo-
cation latency versusthe minimum possiblelatency given the
constraintsof the network. After all of the location requests
arecomplete,we addonenew dataobject to eachparticipat-
ing nodeandobserve thenetwork bandwidthusedin updating
all of the Bloom filters in the system. Eachof theseexperi-
mentsis repeatedusingBloom filters of severaldifferentsizes
anddepths,usingeachof thetwo deterministicalgorithms,and
usingdifferenttransit-stubgraphs.

To explore the advantagesof attenuation,we fix the aver-
agenumberof nodesreachablethroughtheoverlay(wepresent
resultsfor 20 reachablenodes)while varying the depthof the
filters. Consequently, higherlevelsof attenuationimply alower
averageout-degreein the overlay network (i.e. eachnodehas
fewer immediateneighbors). Moreover, in many our experi-
ments,we fix the total amountof local storageusedby the in-
dex; this quantityis theproductof the filter width, depth,and
numberof immediateneighborspernode.

For thedynamicexperiments,weusedtheSURGEwebtraf-
fic generator[17] to chooseour file sizesandreferencestream.
This generatorproducesreadrequestswith characteristicssim-
ilar to observed patternsof web traffic acrossmultiple clients.
We usedit to producea traceagainst50,000uniquefiles, with
sizesrangingfrom 75 bytesto 8.69MB, distributedaccording
to a hybrid of lognormalandparetodistributions(see[17] for
moredetails).Theaveragefile sizeis around21kB.

Eachnodemaintainsan in-memorycacheof the dataitems
it reads,managedin simple least-recently-used(LRU) order.
Eachcacheis 420 kB in size,allowing an averageof 20 files
to becachedat onetime. Additionally, eachfile in thetraceis
keptpermanentlyonasimulatedharddriveof exactlyonenode,
resultingin eachnodestoring50 files on its drive, for a total
of 70 files betweenthe cacheandthe disk, to matchthe static
experiments.Datanot found in cacheis loadedoff this drive,
which is modeledasadelayof E disk

6NG F diskseconds,where
G

is thesizeof thefile, E disk
9O1 � milliseconds,andF disk

9O1 ���
nanosecondsper byte. Theseparametersaresimilar to those
observedonmoderndrives.

As with thestaticexperiments,thedynamicexperimentsare
performedoverarangeof Bloomfilter sizesanddepthsandus-
ing variousdifferenttransit-stubgraphsandserver placements.
Duringthesetests,weobservetheaveragetimeto find areplica
andthe distanceto that replicaversusthe network distanceto
theclosestreplica.Wealsoobserve thetotal interdomainband-
width consumed.

IV. RESULTS

In this section,we utilize the resultsof our experimentsto
justify theclaimsmadein theintroduction:thattheprobabilis-
tic algorithmfinds replicasquickly whenthey arenearby, that
it fails quickly if they arenot, andthat this combinationleads
to a netperformanceimprovement.We first justify our choice
of updatealgorithm.

A. TheProbabilisticUpdateAlgorithm

Figure8 shows thebandwidthusedby eachof thethreeup-
datealgorithmsdescribedin SectionII-D. Thebandwidthnum-

6

0

2000

4000

6000

8000

10000

12000

14000

16000

0 0.5 1 1.5 2 2.5 3 3.5

T
ot

al
 N

um
be

r
of

 F
ai

le
d

B
lo

om
 Q

ue
rie

s

P

Total Index Size At Each Node (kilobytes)

Bloom Query Failures vs. Index Size

Nonattenuated
Filter depth = 2
Filter depth = 3

Filter depth = 2, restricted overlay
Filter depth = 3, restricted overlay

Fig. 9. BloomQueryFailuresvs. Index Size. As thewidth of thebloomfilters
increases,thefalsepositive ratedropsquickly. Restrictingtheoverlaynetwork
to minimize the numberof physical interdomainedgecrossingscausesmore
falsepositives,but yieldsbandwidthadvantages(seeFigure12). Therestricted
overlayhasnoeffecton thefalsepositivesof nonattenuatedfilters.

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

C
um

ul
at

iv
e

F
ra

ct
io

n

Q

Fraction Increase in Query Time

Bloom Failure Overhead (CDF), Total Index Size = 1.83 kb

Nonattenuated
Filter depth = 2, restricted overlay
Filter depth = 3, restricted overlay

Fig. 10. Additional CostDue to Failed BloomQueries. Even whena prob-
abilistic queryfails, the total locationtime is not muchmorethanif thequery
werehandledby thedeterministicalgorithmalone.Herewe seethatfor filters
of depth3, 86percentof failedBloomqueriestakeonly 20percentlongerthan
if they hadbeenhandledby thedeterministicalgorithmalone.

0

10

20

30

40

50

60

70

80

90

(0, 30) [30, 60) [60, 90) [90, 120) [120, 150) [150, 180)

R
ou

tin
g

S
tr

et
ch

R

Document Distance from Query Source (in 30 ms buckets)

Routing Stretch vs. Ideal Latency (Home Node)

Home Node Alone
Nonattenuated

Filter depth = 2
Filter depth = 3

(a)

0

5

10

15

20

25

(0, 30) [30, 60) [60, 90) [90, 120) [120, 150) [150, 180)

R
ou

tin
g

S
tr

et
ch

R

Document Distance from Query Source (in 30 ms buckets)

Routing Stretch vs. Ideal Latency (Tapestry)

Tapestry Alone
Nonattenuated

Filter depth = 2
Filter depth = 3

(b)
Fig. 11. RoutingStretch vs. Ideal Latency. Althoughtherearefew documentscloseto their querysourcesin thestaticexperiments,thehybrid algorithmstill
managesto find themsufficiently quickly thatit achievesa far lower routingstretchthanthedeterministicalgorithmsalone.TheHomeNodealgorithmis shown
in (a),andTapestryis shown in (b). Theerrorbarsin thisgraphrepresentthe0thand99thpercentiles.

bersshown arefor total numberof bytessentacrossany physi-
cal interdomainlink in the systemasthe resultof addingone
documentto a single server’s cache.4 As describedin Sec-
tion III, we measuredthesenumbersat the endof eachstatic
test,dividing by the total numberof documentsaddedto pro-
ducean averagecostper document.The graphclearly shows
significantbandwidthreductionsfor the moreadvancedalgo-
rithms, so long asthe attenuatedBloom filters beingusedare
deepenoughto take advantageof them. Destinationfiltering
hasno effect unlessthereareloopsof lengththreeor morein
theupdatepropagation graph,sono changeis seenfor depths
oneor two. Likewise,sourcefiltering hasnoeffectunlessthere
areloopsof lengthtwo or more,sono changeis seenfor depth
one. The remainderof our experimentsonly usesourcefilter-
ing, sinceit either matchesor outperformsthe lessadvanced
algorithmsin every case.

B. StaticExperiments

Our goalwith thestaticexperimentsis to show first that the
hybrid algorithmdoesnot adverselyaffect the locationof dis-
tantreplicas,andsecondthatit outperformseitherdeterministic
algorithmalonein locatingnearbyones.
+
All errorbarsin our graphsrepresentthestability of thevaluesshown with

respectto changesin theunderlyingphysicalandoverlaynetworks,andunless
otherwisenotedmark95percentconfidenceintervals.

To determinewhetherthehybrid algorithmwould adversely
affect queriesfor distantreplicas,we graphedthe numberof
hybrid querieswhichhadto fall backonthedeterministicalgo-
rithm. Theresultis shown in Figure9. Fromthisgraph,wesee
that a total index sizeof around1.83kilobytesis sufficient to
limit thenumberof suchfailing queries.Takingthenumberof
documentspernodetimestheaveragefile sizeof theSURGE
traces,we seethat this index sizeis only 0.136percentof the
sizeof thedata.

To further qualify the impact of failed Bloom queries,we
show thecumulative distribution functionof how muchlonger
a failed Bloom querytakesthanonewhich hadusedTapestry
from the beginning in Figure10. This graphshows that even
whena probabilisticquery fails, the total locationtime is not
muchmorethanif thequerywerehandledby thedeterministic
algorithmalone.For example,with filtersof depth3,86percent
of failedBloomqueriestakeonly 20percentlongerthanif they
hadbeenhandledby the deterministicalgorithmalone. Thus
by usingBloom filters of a reasonablesize,we incureonly a
limited numberof failedqueries,andthefailuresthatdo occur
only minimally affect thetotal routingtime.

Figure11 shows theaverageroutingstretchof thehybrid al-
gorithm asa function of the querysource’s distancefrom the
querieddocument.In Figure11(a),thedeterministicalgorithm
usedis homenoderouting,asdescribedin SectionIII-A.1; in
Figure11 (b), Tapestryis used.In bothcases,the total sizeof

7

0

10

20

30

40

50

Nonattenuated Depth = 2 Depth = 3

C
um

ul
at

iv
e

K
ilo

by
te

s
pe

r
D

oc
um

en
t A

dd
ed

Cumulative Interdomain Bandwidth vs. Filter Depth

Index size = 1.10 kb
Index size = 1.83 kb
Index size = 3.30 kb

(a)

0

10

20

30

40

50

Nonattenuated Depth = 2 Depth = 3

C
um

ul
at

iv
e

K
ilo

by
te

s
pe

r
D

oc
um

en
t A

dd
ed

Cumulative Interdomain Bandwidth vs. Filter Depth (Restricted Overlay)

Index size = 1.10 kb
Index size = 1.83 kb
Index size = 3.30 kb

(b)
Fig. 12. InterdomainBandwidthvs.Filter DepthThesetwo graphsshow theamountof interdomainbandwidthconsumedby theupdatealgorithmasa function
of filter depthandoverlaytopology. In Figure(a), theoverlaygraphis constructedgreedily, andall depthsuseroughlythesameamountof bandwidth.In Figure
(b), thenumberof overlayedgescrossinga physical interdomainedgehasbeenlimited asmuchaspossiblewhile maintainingtheaverageneighborreachability
pernode.In this case,thetopologydiscoverypropertiesof theattenuatedbloomfilters greatlyreduceupdatebandwidth.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Tapestry Alone Nonattenuated Depth = 2 Depth = 3

R
ou

tin
g

S
tr

et
ch

S

Dynamic Routing Stretch vs. Algorithm

Fig.13. DynamicRoutingStretch vs.Algorithm.Thisgraphshowstheaverage
routingstretchasa functionof routingalgorithmfor thedynamicsimulations.
Thehybrid algorithmfar outperformsTapestryalonefor all filter depths.See
thetext for furtherdiscussion.

the Bloom filter index at eachnodeis fixed at 0.136percent
of the datasize,assuggestedby the previous results.Onein-
terestingaspectof thesegraphsis that theattenuatedfilters are
providing comparableadvantageto thenonattenuatedonesus-
ing fewer immediateneighbors.

As describedin theintroduction,thecloserthequerysource
lies to thequerieddocument,thelessoptimally thedeterminis-
tic algorithmsperform.Thehybrid algorithmachievesa lower
averagestretchthaneitherof thedeterministicalgorithmsalone
andreducesthevarianceof thestretchaswell. Anotherinter-
estingfeatureof Figure11 is thatTapestryachievesa far lower
routingstretchthanhomenodelocation,especiallyfor nearby
replicas.This effect is producedby the locality inherentin the
Tapestryroutingmesh.

A final datumfrom the staticexperimentsis shown in Fig-
ure 12, which graphsupdatebandwidthasa function of filter
depth.FromFigure12(a)weseethatin agreedily-constructed
overlay network, in which all nodesare connectedto some
numberof their closestneighbors,attenuationdoesnot pro-
vide any bandwidthadvantages.However, Figure12 (b) shows
that if the numberof overlay edgeswhich traverseeachphys-
ical interdomainedgeis limited, the topology discovery fea-
turesof sourcefiltering greatlyreducethebandwidthconsumed
on thosephysicaledges.Sincetheseedgescaneasilybecome
bottlenecksin real networks,we view this topologydiscovery
propertyasa realbenefitof theattenuatedfilters.

0

0.5

1

1.5

2

2.5

Tapestry Alone Nonattenuated Depth = 2 Depth = 3

D
is

ta
nc

e
S

tr
et

ch

T

Dynamic Distance Stretch vs. Algorithm

Fig. 14. DynamicDistanceStretch vs. Algorithm. This graphshows theratio
of the distancebetweenthe querysourceand the replicawhich wasactually
locatedto thedistancebetweenthequerysourceandclosestreplicaavailable.
The hybrid algorithm finds replicaswhich are closerto the query sourceon
averagethanTapestryalone.

C. DynamicExperiments

In contrastto the static experiments,the dynamiconesal-
low for the existenceof multiple replicasof every document,
subjectto the constraintsof the cachingschemedescribedin
SectionIII. Furthermore,theuseof theSURGEtraffic genera-
tor providesfor substantiallocality in thereferencestream.As
a resultof thesetwo factors,it is oftenthecasein theseexper-
imentsthat several replicasexist nearany given querysource,
sothehybrid algorithmhasafargreateropportunityto improve
performancethanin the staticexperiments,whereeachdocu-
mentexistedonly ononenode.

Figure13 shows the averagerouting stretchin the dynamic
experimentsasa functionof routingalgorithm. In general,the
hybrid algorithmfar outperformsTapestryalone,by asmuch
asa factorof 2.1. Furthermore,Figure14 shows the ratio of
the distancebetweenthe query sourceand the replica which
wasactually locatedto the distancebetweenthe querysource
andclosestreplicaavailable.Onceagain, thehybrid algorithm
outperformsTapestryalone,again by as much as a factor of
1.94. Not only doesthe hybrid algorithmfind replicasin less
time thanTapestry, it alsofindscloserreplicas.

Our lastgraph,Figure15,shows thetotal interdomainband-
width consumedduringtheentiredynamictestcase,measured
asthe total numberof bytesthat traverseall physical interdo-
mainedgesin thenetwork. As mentionedabove, thehybrid al-

8

0

5

10

15

20

25

30

35

Tapestry Alone Nonattenuated Depth = 2 Depth = 3

C
um

ul
at

iv
e

B
an

dw
id

th
 C

on
su

m
ed

 (
gi

ga
by

te
s)

U

Cumulative Interdomain Bandwidth vs. Algorithm

Fig. 15. DynamicBandwidthConsumedvs.Algorithm.Thetotal interdomain
bandwidthusedby thehybrid algorithmis comparableto thatusedby Tapestry
alone;thebandwidthreductionresultingfrom thecloserreplicasfoundby the
hybrid algorithmoffsetstheincreasedbandwidthusageof theupdatealgorithm.
Furthermore,thebandwidthreductiongainedby thetopologydiscovery prop-
ertiesof theattenuatedalgorithmcanbeclearlyseen.

gorithmfindsreplicascloserto thequerysourcethanTapestry
alone.As shown in Figure15, theresultingreductionin band-
width from thishigherlocationquality is sufficient to maskthe
additionalbandwidthbeingusedby the hybrid algorithmdur-
ing filter updates.Thustheimprovedperformanceof thehybrid
algorithmdoesnot imply a furthercostin bandwidth.

V. FUTURE WORK

Thereareat leasttwo waysin which this work couldbeim-
proved. First, in our simulationswe constructtheBloom filter
overlay graphsusing global knowledge. It seemsreasonable
to believe that simpleoverlay graphscould be constructedin
a self-organizingmanner;for instance,theTapestryoverlay is
soconstructed.However, asshown in SectionIV-B, theband-
width consumptionof theattenuatedBloom filters canbedra-
maticallyreducedby placingrestrictionson thestructureof the
overlay with respectto the underlyingphysical network. The
designof algorithmsto adhereto suchrestrictionswhile pro-
ducinganoverlaynetwork in a self-organizingmanneris thus
animportantcomponentof our futurework.

Second,sincethecachesin our systemaremanagedin LRU
order, every readcausesat leastonenew dataitem to be pub-
lishedin thedeterministicalgorithmandpropagatedasa filter
updatein the probabilisticscheme.This cachingpolicy obvi-
ously generatesmoreupdatetraffic thana moreadvancedone
suchasLRU- V [18] or

B
-chanceforwarding[19] might. Since

an updateto a cachecausesTapestryto sendonly
���������
	��

messages,whereastheprobabilisticalgorithmmustsendsome
amountof informationto every server in its filters’ range,us-
ing thesemoreadvancedalgorithmsshouldonly improve the
bandwidthconsumptionof the probabilisticalgorithmrelative
to Tapestry. Our currentresultsarethussomewhatpessimistic
with respectto thebandwidthusageof ouralgorithm.

VI . RELATED WORK

Bloom filters [11] have long beenusedasa lossysummary
technique.To ourknowledge,however, wearethefirst to com-
binetheminto acompound,topology-awaredatastructure.

In [20], Bloom filters wereusedto improve theefficiency of
distributed join operationsby filtering elementswithout con-
sumingnetwork bandwidth.In [21], Aoki usedBloomfilters to
guidesearchesthroughgeneralizedsearchtrees.

Both the SummaryCache[12] andCacheDigests[22] use
Bloom filters to to summarizethe contentsof a setof cooper-
atingwebcaches.Both techniquesaresimilar to our nonatten-
uatedscheme,but useHTTP astheir deterministicalgorithm.
In contrastto both schemes,we assumedocumentsarehighly
mobile, requiringfrequentupdatepropagation; this frequency
motivatesour concernfor updateefficiency. In contrastto both
SummaryCacheandour work, theCacheDigestschemepolls
for updatesperiodicallyratherthanpushingthemto neighbors
aschangesoccur.

TheSecureDiscoveryService(SDS)[23] usesBloomfilters
to routequeriesto appropriateservices, suchasprintersor scan-
ners;in thatwork, serviceattributesarearrangedin a treewith
theBloomfiltersateachnodesummarizingtheattributesof the
node’schildren.Consequently, theaccuracy of informationde-
creasesasa searchclimbs toward the root of the servicetree,
leadingto wastedsearchtraffic throughtheroot node. In con-
trast,we useattenuatedBloom filters only for local-arearout-
ing, falling backon a bandwidth-efficient protocolin thewide
area.

Ourhomenodelocationprotocolshareselementswith exist-
ing directoryservicessuchasthe InternetDomainNameSer-
vice (DNS) [13] and Globe [24]. Like our algorithms,DNS
includes provisions for the caching of location information
throughoutthenetwork, but doessousinga weakconsistency
model that would not be desirablewith objectsmoving at the
frequentlyaswe assumein this paper. TheGlobesystempro-
videsahierarchicalorganizationfor replicasthatmightprovide
fasterupdatesof locationinformationthanDNS.Thethree-hop
locationandroutingprotocolof thehomenodesolutionalsore-
semblesoptimizationsusedin cache-coherentmultiprocessors
suchasDASH [14].

The problemof constructinga practical location indepen-
dentroutinginfrastructurehasbeentackledin severaldifferent
projects. Although we choseTapestry[10] in SectionIII-A,
several competingarchitecturesinclude CAN [7], Chord [8],
Pastry[9]. All of thesearchitecturesprovideguaranteed,deter-
ministic routing from a client to a closereplica. Theexactde-
tails of theproposalsarenot particularlyrelevant to this paper,
otherthanthat they canserve asrealisticfall-backalgorithms
for ourprobabilisticlocationtechniques.

VI I . CONCLUSION

In this paperwe have presenteda new, probabilistic rout-
ing algorithmdesignedto improve the locationlatency of ex-
isting deterministicapproaches.The algorithm is basedon a
new datastructurewe call an attenuatedBloom filter. Our al-
gorithm finds nearbyreplicasquickly, and if no suchreplicas
exist, it fails quickly as well. Furthermore,we have shown
thatour algorithmmaybecombinedwith a deterministicalgo-
rithm to improveaverageroutingstretchfor nearbydocuments,
whereit mattersthemost. Finally, we have demonstratedthat
when replicasare allowed to move in responseto a request
streammodeledafterreal-world accesspatterns,this combina-
tion improved averageperformanceby asmuchasa factorof
2.1. We aresatisfiedenoughwith our resultsthatwe areusing
this probabilisticalgorithmaspartof theroutingsubsystemof
OceanStore.

9

PROCESSUPDATE WX� ,/YZ,\[^]
1 '`_ NEIGHBORFILTER WX�]
2 foreach WXa ,cb5,cde]�f�Y do 'hg/iL_ d endfor
3 foreach �-j flknm � do
4 L _ LASTUPDATEFILTER WX�oj]
5 Y j�_7p
6 foreach WXa ,\bq,cde]�f�Y do
7 arjZ_naCsut
8 if d ��vDwyx g{zci �|t then
9 }~_ true
10 foreach �oj j flknm �-j do
11 'Cj�_ NEIGHBORFILTER WX�-j j]
12 if '�jg�zci �Nt then }~_ falseendif
13 endfor
14 if } then
15 x g{zci _7v
16 Y j�_ Y jo���WXa�j ,\bq, v] �
17 endif
18 elsif d �|t�wyx g{zci ��v then
19 if � IGNORINGSOURCE WX�oj ,c[^] then
20 x g{zci _�t
21 Y j�_ Y jo���WXa�j ,\bq, t] �
22 endif
23 endif
24 endfor
25 if Y jZ���p then SENDUPDATE WX�oj ,/Y j ,c[^] endif
30 endfor
Fig. 16. Pseudo-codefor PROCESSUPDATE. Seetext for description.

APPENDIX

Thissectionpresentsthepseudo-codefor thesourcefiltering
updatealgorithm. Its argumentsarea neighbornumber(

B
), an

update(�), andthesourceof thatupdate(
G
), whereanupdate

is a setof triples,
�@� �q����� � , representingtheintentionto change

thevaluein theneighbor’s Bloom filter at row
�

andcolumn �
to value� . Lines1–2of theprocedurelook up thefilter for the
neighborwhosenttheupdate() andapplythegivenchanges.
Then,for eachotherneighbor(

B I), welook upour imageof the
last recordthey have of our documents(lines3–4). This is an
attenuatedfilter, � , identical in contentsto the they would
look up for usif we sentthemanupdate.For every clearedbit
in theupdate,wecheckto seeif thisneighbor’sfilter holdsaset
bit. If so,wecanonly clearit if nootherneighborhasthegiven
bit set(lines10–13).If we make a change,we includeit in the
outgoingupdate(lines14–17).Next, if theincomingupdatehas
a bit setwhich is not setin the filter for

B I , andthat neighbor
is not ignoring this source,we changeits filter andappendthe
changeto theoutgoingupdate(lines18–23).Finally, if wehave
changedanythingfor thisneighbor, wesendit theupdatewe’ve
constructed.

REFERENCES

[1] W. Bolosky, J.Douceur, D. Ely, andM. Theimer, “Feasibilityof aserver-
lessdistributedfile systemdeployedon anexisting setof desktopPCs,”
in Proc.of Sigmetrics, June2000.

[2] I. Clark, O. Sandberg, B. Wiley, andT. Hong, “Freenet: A distributed
anonymousinformation storageand retrieval system,” in Proc. of the
WorkshoponDesignIssuesin AnonymityandUnobservability, Berkeley,
CA, July2000,pp.311–320.

[3] Y. Chen,J. Edler, A. Goldberg, A. Gottlieb, S. Sobti, and P. Yianilos,
“Prototypeimplementationof archival intermemory,” in Proc. of IEEE
ICDE, Feb. 1996,pp.485–495.

[4] J. Kubiatowicz et al., “Oceanstore:An architecturefor global-scaleper-
sistentstorage,” in Proc.of ASPLOS. ACM, Nov. 2000.

[5] FrankDabek,M. FransKaashoek,David Karger, RobertMorris, andIon
Stoica, “Wide-areacooperative storagewith CFS,” in Proc. of ACM
SOSP, October2001.

[6] PeterDruschelandAntony Rowstron, “PAST: A large-scale,persistent
peer-to-peerstorageutility,” in Proc.of HOTOSConf., 2001.

[7] Sylvia Ratnasamy, Paul Francis,Mark Handley, RichardKarp,andScott
Schenker, “A scalablecontent-addressablenetwork,” in Proceedingsof
SIGCOMM. ACM, August2001.

[8] Ion Stoica,RobertMorris, David Karger, M. FransKaashoek,andHari
Balakrishnan,“Chord: A scalablepeer-to-peerlookupservicefor internet
applications,” in Proceedingsof SIGCOMM. ACM, August2001.

[9] PeterDruschelandAntony Rowstron,“Storagemanagementandcaching
in PAST, a large-scale,persistentpeer-to-peerstorageutility,” in Proc.of
ACM SOSP, 2001.

[10] B. Zhao,A. Joseph,andJ.Kubiatowicz, “Tapestry:An infrastructurefor
fault-tolerantwide-arealocation and routing,” Tech.Rep.UCB//CSD-
01-1141,Universityof California,Berkeley ComputerScienceDivision,
April 2001.

[11] B. Bloom, “Space/timetrade-offs in hashcodingwith allowableerrors.,”
in Communicationsof theACM, July 1970,vol. 13(7),pp.422–426.

[12] L. Fan,P. Cao,J.Almeida,andA. Broder, “Summarycache:A scalable
wide-areaWeb cachesharingprotocol,” in Proc. of ACM SIGCOMM
Conf., Sept.1998,pp.254–265.

[13] P.V. MockaptrisandK. Dunlap, “Developmentof thedomainnamesys-
tem,” in Proc.of ACM SIGCOMMConf., August1988.

[14] Daniel Lenoski, JamesLaudon, Truman Joe, David Nakahira, Luis
Stevens,AnoopGupta,andJohnHennessy, “The dashprototype:Logic
overheadand performance,” IEEE Transactionson Parallel and Dis-
tributedSystems, vol. 4, no.1, pp.41–61,January1993.

[15] C. Plaxton,R. Rajaraman,andA. Richa, “Accessingnearbycopiesof
replicatedobjectsin a distributedenvironment,” in Proc. of ACM SPAA,
June1997.

[16] E. Zegura,K. Calvert, andS.Bhattacharjee,“How to modelaninternet-
work,” in Proc.of INFOCOMM, 1996.

[17] Paul BarfordandMark Crovella, “Generatingrepresentative webwork-
loadsfor network andserverperformanceevaluation,” in Proc.of Sigmet-
rics, 1988.

[18] E. O’Neil, P. O’Neil, andG. Weikum, “The lru-k pagereplacementalgo-
rithm for databasediskbuffering,” in Proc.of ACM SIGMODConf., May
1993.

[19] M. Dahlin, T. Anderson,D. Patterson,and R. Wang, “Cooperative
caching: Using remoteclient memory to improve file systemperfor-
mance.,” in Proc.of USENIXSymp.onOSDI, Nov. 1994.

[20] Lothar F. Mackert andGuy M. Lohman, “R* optimizervalidationand
performanceevaluationfor distributedqueries,” in Proc.of Intl. Conf. on
VLDB, August1986.

[21] Paul M. Aoki, “Generalizing“search” in generalizedsearchtrees,” in
Proc.14thInt’l Conf. onDataEngineering, February1998.

[22] Alex Rousskov andDuaneWessels,“Cachedigests,” in Proc of 3rd Int’l
World WideWebCachingWorkshop, 1998.

[23] StevenE. Czerwinski,BenY. Zhao,ToddD. Hodes,Anthony D. Joseph,
andRandyH. Katz, “An architecturefor a secureservicediscovery ser-
vice,” in Proc.of ACM/IEEEMobiComConf., 1999.

[24] M. van Steen,F.J. Hauck, G. Ballintijn, and A.S. Tanenbaum,“Algo-
rithmic designof the globewide-arealocationservice.,” TheComputer
Journal, vol. 41,no.5, 1998.

10

