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ABSTRACT
Despite traditional web caching techniques, redundant data is of-
ten transferred over HTTP links. These redundant transfers result
from both resource modification and aliasing. Resource modifica-
tion causes the data represented by a single URI to change; often, in
transferring the new data, some old data is retransmitted. Aliasing,
in contrast, occurs when the same data is named by multiple URIs,
often in the context of dynamic or advertising content. Traditional
web caching techniques index data by its name and thus often fail
to recognize and take advantage of aliasing.

In this work we present Value-Based Web Caching, a technique
that eliminates redundant data transfers due to both resource mod-
ification and aliasing using the same algorithm. This algorithm
caches data based on its value, rather than its name. It is designed
for use between a parent and child proxy over a low bandwidth link,
and in the common case it requires no additional message round
trips. The parent proxy stores a small amount of soft-state per client
that it uses to eliminate redundant transfers. The additional compu-
tational requirements on the parent proxy are small, and there are
virtually no additional computational or storage requirements on
the child proxy. Finally, our algorithm allows the parent proxy to
serve simultaneously as a traditional web cache and is orthogonal to
other bandwidth-saving measures such as data compression. In our
experiments, this algorithm yields a significant reduction in both
bandwidth usage and user-perceived time-to-display versus tradi-
tional web caching.

Categories and Subject Descriptors
C.2.2 [Computer-Communications Networks]: Network Proto-
cols—Applications; C.2.4 [Computer-Communications Networks]:
Distributed Systems—Client/server

General Terms
Algorithms, Performance, Design, Experimentation, Security

Keywords
aliasing, caching, duplicate suppression, dynamic content, HTTP,
Hypertext Transfer Protocol, privacy, proxy, redundant transfers,
resource modification, scalability, World Wide Web, WWW

1. INTRODUCTION
With the widespread deployment of broadband, it is often as-

sumed that bandwidth is becoming cheap for the common Internet
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Figure 1: Our target population. In this paper we look at reducing the
user perceived time-to-display (TTD) of web pages served over a low
bandwidth link, such as a telephone modem. Our techniques make use
of computational and storage resources at the Internet service provider
(ISP) to which a client is connected.

user. Although this notion is true to an extent, a surprising number
of users still connect to the Internet over 56 kbps modems. America
Online, for example, has 33 million users who connect primarily
via modems, and many other Internet service providers (ISPs) pri-
marily support modem users. Moreover, the emerging deployment
of universal wireless connectivity ushers in a new wave of users
connecting over low-bandwidth links. In this paper we present a
technique called Value-Based Web Caching (VBWC) that aims to
mitigate the limitations of such connections.

We begin by assuming that our user has a very low-bandwidth
(less than 80 kb/s) connection over a telephone or wireless network
to an ISP, as illustrated in Figure 1. This service provider may run
a web-proxy and/or cache on behalf of the user and is in turn con-
nected to the Internet at large. In such a situation, the bandwidth
through the telephone or wireless network is a fundamental limita-
tion of the system; it is the largest contributor to client-perceived
latency for many files. For example, in 1996 Mogul et al. [14]
found that the average response size for a successful HTTP request
was 7,882 bytes, which takes a little over a second to transmit over
a modem; in contrast, the round-trip time between the client and
server more often falls in the 100-300 ms range. Other traces show
mean response sizes of over 21 kB [10].

In the Mogul et al. study, the authors also showed that much of
the limited bandwidth available to clients was being wasted. Some
of this waste is easy to eliminate: as many as 76.7% of the full-body
responses in the studied trace were shortened by simple gzip com-
pression, resulting in a total savings of 39.4% of the bytes trans-
ferred. Other bandwidth waste is more difficult to correct.

One example of bandwidth waste that is difficult to eliminate
occurs when the data represented by a single Uniform Resource
Identifier (URI) changes by small amounts over time. This phe-
nomenon is called resource modification; it it tends to occur often
with news sites such as cnn.com. Mogul et al. showed that 25–30%
of successful, text-based responses were caused by resource modi-
fication, and they found that using delta encoding over the response
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bodies eliminated around 50% of the data transferred. Our results
confirm that when used between the requesting client and the origin
server, delta encoding produces significant reductions in bandwidth
consumed.

When an origin server does not compute deltas itself, a proxy
may compute them on behalf of clients. Banga, Douglis, and Rabi-
novich proposed optimistic deltas [2], in which a web cache sends
an old version of a given resource to a client over a low bandwidth
link immediately after receiving a request for it. The cache then re-
quests the current version of the resource from the origin server,
and sends a delta to the client if necessary. To provide for the
largest number of possible optimistic responses for dynamic web
page content, it is desirable that the cache be able to transmit the
response sent by the origin server for one client as the optimistic
response to another. Unfortunately, since the cache does not know
the semantic meaning of the page, this technique has the poten-
tial to introduce privacy concerns. Ensuring that no single client’s
personal information leaks into the response sent to another is a
non-trivial task.

A second type of bandwidth waste occurs when two distinct
URIs reference the same or similar data. This phenomenon is com-
monly termed aliasing; and can occur due to dynamic content, ad-
vertising, or web authoring tools. It was studied in 2002 by Kelly
and Mogul [10], who studied the case in which one or more URIs
represent exactly the same data. They found that 54% of all web
transactions involved aliased payloads, and that aliased data ac-
counted for 36% of all bytes transferred. The standard web caching
model identifies cacheable units of data by the URIs that reference
them; as such, it does not address the phenomenon of aliasing at all.
Even if it is known in advance that two or more URIs share some
data, there is no way to express that knowledge under the standard
model.

In this paper, we present Value-Based Web Caching, a technique
by which cached data is indexed by its value, rather than its name.
Our algorithm has the following interesting properties.

• It detects and corrects excess bandwidth usage due to both
resource modification and aliasing with the same algorithm.

• It is oblivious to data format; it requires no understanding of
HTML syntax.

• It eliminates some of the privacy concerns associated with
delta-encoding proxies; the client in our algorithm only re-
ceives data that was originally intended for it by an origin
server.

• Although it is not strictly a stateless protocol, proxies store
only soft-state; loss or inconsistency of this state results only
in performance degradation, not a compromise of semantic
transparency. Furthermore, it requires orders of magnitude
less storage resources on the proxy than on the client, allow-
ing a single proxy to support many clients.

• In the common case, it adds no round trips to the standard
HTTP protocol, achieving performance comparable to con-
ventional caching even in the absence of aliasing and re-
source modification.

The remainder of this paper is organized as follows: Section 2
presents the Value-Based Web Caching algorithm; it is followed by
a performance evaluation in Section 3. Section 4 presents related
work, and Section 5 concludes.
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Figure 2: Value-Based Web Caching. As the proxy receives each block
from the origin server, it hashes it, stores the result in its cache, and
forwards the block on to the client (upper figure). When a block is sent
again as part of a different response, only the hash is retransmitted to
the client (lower figure).

2. THE VBWC ALGORITHM
In this section we present the Value-Based Web Caching algo-

rithm; we begin with an overview before discussing the details.

2.1 Overview
Consider a web resource, such as the main page of a news web

site. This page changes over time, and it contains references to
other resources such as images and advertising content. In a tra-
ditional web cache, the data for each of these resources would be
stored along with some freshness information and indexed under
the URI by which it is named. The fundamental idea behind VBWC
is to index cached data not only by its name, but by its value as well.
To achieve this goal efficiently, we break the data for a resource into
blocks of approximately 2 kB each, and name each block by its im-
age under a secure hash function, such as MD5 [19]. This image is
called the block’s digest; by the properties of the hash, it is highly
unlikely that two different blocks map to the same digest under the
secure hash. A web cache using VBWC stores these blocks as its
first-class objects. In order to also be able to find data by its name,
a second table may be used to map resources to the blocks of which
they are composed.

Indexing web resource data in this manner can result in better
utilization of storage resources [1, 12]. For example, when aliasing
occurs, the aliased data is stored only once. However, the real ben-
efit of value-based caching comes when resources are transferred
between caches. Figure 2 shows the basic algorithm. The first
time a resource is requested by the client, the proxy fetches its con-
tents from an origin server. These contents are broken into blocks
and hashed. The proxy stores each block’s digest, then it trans-
mits both the digests and the blocks to the client. The client caches
the blocks indexed by their digests and associated URIs. Later,
the proxy can detect that a subsequent request contains an already
transmitted block by checking for that block’s digest in its cache.
In such cases, only the digest is retransmitted to the client, which
reassembles the original response using the data in its block cache.

Before delving into the details of this algorithm, let us consider
its benefits. First, as shown in Figure 2, it does not matter whether
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Before insert:

46 CC 1C 0C 97 40 D0 DB 5874 3F 53 D0 F0 57 F8 78 F5 42 88
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After insert:
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block 4 block 5’ block 6’

changed by 
necessity

unnecessary
changes
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4A inserted

Figure 3: The problem with fixed-sized blocks. After an insertion, not
only is the block into which the new value was inserted changed, but all
subsequent blocks are changed as well.

the second request is for the same URI as the first request; all that
is important is that the two responses contain identical regions. By
naming blocks by their value, rather than the resources they are part
of, we recognize and eliminate redundant data transfers due to both
resource modification and aliasing with the same technique.

A second benefit of VBWC is the way in which it distributes
load among the parties involved. As mentioned above, while the
proxy may store the contents of blocks (as it would if it were also
acting as a web cache, for instance), it is only required to store their
digests. As such, the proxy only stores a few bytes (16 for MD5)
for each block of several kilobytes stored by the client. A proxy
may possess considerable storage resources; however, assuming it
has only as much storage as a single client, this storage ratio allows
a single proxy to support hundreds of clients.

A third benefit of our algorithm is that the digests only need to
be computed at the server; the client simply reads them from the
data transmitted to it. In the case where the client is a low-power
device such as a cellular phone or PDA, this computational savings
could result in a significant reduction in latency. On the other hand,
the Java implementation of our algorithm can process blocks at a
rate of 7.25 MB/s on a 1 GHz Pentium III, a rate equivalent to
the download bandwidth of over 1,000 modern modems; we thus
expect the additional per-client computational load on the server to
be small enough to allow it to scale to large numbers of clients.

A final benefit of Value-Based Web Caching is that it requires no
understanding of the contents of a resource. For example, a delta-
encoding proxy (such as that in used in the WebExpress project [8])
will generally make use of the responses that an origin server sends
to many different clients in order to choose a base page for future
use in delta compression. If this process is performed incorrectly,
there is the possibility that one client’s personal information may
become part of the base page transmitted to other clients. Specif-
ically, this information leakage is a result two interacting perfor-
mance optimizations: using a single base page for multiple clients
to save storage resources, and using delta-encoding on responses
marked uncacheable by the origin server. In contrast, a client using
VBWC only receives either the blocks sent to it by an origin server
or the digests of those blocks.

2.2 Choosing Block Boundaries
Above we mentioned that we break each response into blocks; in

this section, we describe how we choose block boundaries. Naı̈vely,
we could use a fixed block size, 2 kB for example. Figure 3 il-
lustrates one problem with this approach: an insertion of a byte

Before insert:

74 3F 53 D0 F0 57 F8 78 F5 42 46 CC 1C 0C 97 40 D0 DB 5840

block

f(74,3F,53)=0 f(0C,97,40)=0

After insert:

46 CC 1C 0C 97 40 D0 DB74 3F 53 D0 F0 57 F8 78 F5 42 40

blockblock

f(74,3F,53)=0 f(42,40,1A)=0 f(0C,97,40)=0

1A inserted

all further blocks unchanged

1A

Figure 4: Picking block boundaries using Rabin functions. An insert
may change the block in which it occurs, split an existing block into
two (shown here), or cause two existing blocks to be combined; the
remainder of the blocks in a stream remain the same.

into a block early in the file (into block 5 in the figure) offsets the
boundaries of every block that follows. As a consequence, our al-
gorithm would only notice common segments in two resources up
to their first difference; common segments that occurred later in the
resources would not be identified.

One solution to this problem was discovered by Manber in an
earlier work [11]: choose block boundaries based on the value of
the blocks rather than their position. Let f be a function mapping n

one-byte inputs uniformly and randomly to the set {0, . . . , 2047}.
In other words,

f :

ntimes
� ��� �

B × B × · · · × B→ {0, . . . , 2047}

where B is the set of possible byte values. We can place a block
boundary before byte i in a resource if the value of f on the n bytes
proceeding byte i is 0. Since f is uniform and random, we expect
to evaluate it on average 2048 times before finding a zero; thus the
expected block size from this technique is 2 kB. In addition, we set
a minimum and maximum block size to avoid choosing blocks that
are too small or large. These limits are necessary primarily because
in practice the function f is computationally easy to invert; without
the limits, a malicious party could create documents consisting of
many small or large blocks and thereby significantly skew the ex-
pected block size. Figure 4 shows an example of computing block
boundaries in this manner for n = 3. There, f(0C, 97, 40) = 0, so
the block in the upper figure ends on byte 40.

The benefit in picking block boundaries by the value of the un-
derlying data is illustrated in the lower half of Figure 4, where
the byte 1A has been inserted into the stream. In this example,
f(42, 40, 1A) = 0, so this change introduces a new boundary,
splitting the original block in two. However, since n = 3, the
boundaries of all blocks three or more positions after the change
are unaffected; in particular, the next block still starts with the byte
value D0. In general, the insertion, modification, or deletion of any
byte either changes only the block in which it occurs, splits that
block into two, or combines that block with one of its neighbors.
All other blocks in the stream are unaffected.

To implement f , Manber used Rabin functions [18], a decision
we follow. Let bi represent byte i in a stream and let p be a prime.
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A Rabin function f is a function

fi = f(bi−n+1, . . . , bi)

≡ bi−n+1p
(n−1) + bi−n+2p

(n−2) + · · · + bi (mod M)

for some modulus M . Such functions are attractive because they
can be computed iteratively:

fi+1 = f(bi−n+2, . . . , bi+1)

≡ (fi − bi−n+1p
(n−1)) × p + bi+1 (mod M)

Using this knowledge, we can compute fi+1 from fi with only a
subtraction, two multiplications, a division, and an add. Moreover,
since there are only 256 possible values of bi−n+1, the first multi-
plication can be computed efficiently via table lookup. As a result,
we can compute fi very efficiently for all i.

2.3 An Enhancement
Consider an HTTP client loading a web page through a proxy.

The main page is stored on a server A, and it includes two embed-
ded images, one stored on server B and the other on server C. The
client opens a connection to the proxy and enqueues the request for
the resource on A. Once it receives the response body, it parses
it and discovers it must also retrieve the resources on B and C in
order to display the page. To perform these retrievals, the client
could enqueue the request for the resource on B followed by the
request for the resource on C on the connection it already has open
to the proxy, one after the other. However, because of the request-
response semantics of the HTTP protocol, doing so would require
the proxy to transmit the response for B before the response for C,
regardless of which of them was available first. If server B was
under heavy load or simply far away in latency from the proxy, a
significant delay could result in which the data from C was avail-
able but could not be sent to the client, resulting in idle time on the
low bandwidth link. This situation is commonly termed head-of-
line blocking.

2.3.1 Allowing Multiple Connections
To reduce the occurrence of performance problems due to head-

of-line blocking, most HTTP clients open several connections to a
proxy at a given time. The Mozilla web browser, for instance, will
open up to four connections to its parent proxy. For the same rea-
son, we would like our child proxy running the VBWC algorithm to
be able to open multiple connections to its parent. This decision in-
troduces complications into the algorithm as follows. As discussed
in the algorithm overview, the child proxy in our algorithm main-
tains a cache of previously transmitted blocks, and the parent proxy
maintains a list of the digests of the blocks the child has already
seen. Because the child only has finite storage resources available,
it must eventually evict some blocks from its cache. Were the par-
ent to later transmit a digest for a block the child had evicted, the
child would have no way to reproduce the block’s data. Thus there
must be some way to keep the list of blocks on the parent consistent
with the blocks actually cached by the child.

In the case where there is only one connection between the par-
ent and the child, keeping the parent’s list of blocks consistent with
the child’s block cache is simple. Both sides simply use some de-
terministic algorithm for choosing blocks to discard. For example,
Spring and Wetherall [23] used a finite queue on either end. When
the parent transmitted a block, it placed its digest on the head of
the queue, and the child did the same on receiving a block. When
the queue became full, the parent would remove a digest from its
tail; the child would again do the same, but would also discard the
block corresponding to the received digest. To decide whether to
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Figure 5: The full algorithm. The web browser issues a GET request
(1) that is forwarded all the way to the origin server. The server begins
sending the response back, and it is broken up into blocks (2) at the
parent proxy. On receipt of block A, the child proxy executes the LRU
algorithm and chooses block B to discard. However, as it sends the
castout message (3) to the parent proxy, the parent proxy is sending
across only the digest of block B, assuming the child still has it cached
(4). When the child receives the digest for B, it has already sent block
A to the browser, so it cannot simply repeat the entire request. Instead,
it requests block B by name from the parent proxy (5). Since the digest
for block B was recently transmitted, it is still in the server’s transmit
buffer, so it is forwarded on to the child proxy, and in turn, to the client.

transmit a whole block or only its digest, the parent need only ex-
amine the queue; if the digest of the block in question is already
there, the block is cached on the child and only the digest must be
transmitted. Unfortunately, with multiple connections between the
parent and child, the order in which blocks are sent is no longer
necessarily the same as the order in which they are received, so a
more sophisticated algorithm must be used.

To allow for multiple connections between the child and parent
proxies, we abandon the idea of using a deterministic function on
either end of the link between them, and instead use the follow-
ing optimistic algorithm. First, the server records the digests of
the blocks that it has transmitted in the past, and assumes that un-
less it is told otherwise, the child still has the data for those blocks
cached. The child, in turn, uses a clock algorithm to approximate
LRU information about the blocks, discarding those least-recently
used when storage becomes scarce. After discarding a block, the
client includes its digest in the header of its next request to the par-
ent, using a new “X-VBWC-Castout” header field. So long as the
list of references to to the blocks contains some temporal locality,
it is very unlikely that the parent will transmit the digest of a block
that the child has just cast out—rather, the castout message will
reach the server in time. If, however, this unfortunate case does oc-
cur, the child uses a request with a dummy URI to retrieve the data
for the missing block. This entire process is illustrated in Figure 5.

A final modification is necessary to finish the optimistic algo-
rithm. Before, the server only cached the digests of blocks it trans-
mitted, not their values. If the child were to re-request a block as
described above, the server would not be able to reproduce the data
for it. To prevent this problem, we add to the server a queue of the
last few blocks transmitted, which we call the transmit buffer. The
size of this queue is determined by the bandwidth-delay product
of the link between the parent and its child, plus some additional
space to handle unexpected delays. For example, if the parent is on
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a link with a one-way latency of l seconds and a bandwidth β, a
queue size of sβ will allow the child s − l seconds from the time
it receives a unrecognized digest to send a retrieval request before
that block is discarded from the transmit buffer. If the parent proxy
is also acting as a web cache with an LRU eviction policy, the stor-
age used for the transmit buffer can be shared with that used for
general web caching.

2.3.2 Discussion
The transmit buffer in our algorithm might seem unnecessary;

after all, the server can always retrieve a resource from the relevant
origin server in order to re-acquire the data for a particular block.
This is not the case, however, and the reasoning why it is not is
somewhat non-obvious, so we present it here.

In building a web proxy, one possible source of lost performance
is called a store-and-forward delay. Such a delay occurs when
a web proxy must store an entire response from an origin server
(or another proxy) before forwarding that response on to its own
clients. Our algorithm does not suffer from such delays (except as
necessary to gather all of the data from a given block), and this
feature is an important one for its performance. Consider a single
HTML page with a reference to a single image early in the page.
If the page is transmitted without store-and-forward delays, the re-
questing client sees the reference early in the page’s transmission
and can begin fetching the corresponding image through another
connection.1 Otherwise, it must wait until the entire file is avail-
able before it has the opportunity to see the reference, so the image
retrieval begins much later. Since the bandwidth of the modem is
low and its latency is long, it is crucial that the child proxy forward
each block of a response to the client as quickly as possible, in or-
der to minimize the time until the client sends subsequent requests
for embedded objects.

Unfortunately, eliminating store-and-forward delays conflicts
with the notion of an optimistic algorithm as follows. First, modern
web sites are rich with dynamic content, both due to advertising
and due to extensive per-user and time-dependent customization.
Two requests for the same resource, even when issued at almost
the same time, often return slightly different results. If the child
proxy in our algorithm were to receive a digest for a block that it
did not have cached, the parent proxy might not be able to retrieve
the contents of that block via a subsequent request to the associ-
ated origin server. If the child proxy has already forwarded some
of the response to the client program, it cannot begin transmitting a
different response instead.

We would like our algorithm to provide semantic transparency;
that is, any response a client receives through our pair of proxies
should be identical to some response it could have received directly
from an origin server. Under normal circumstances, this notion
means that the response received is one that the server sent at a
given point in time, not the mix of several different responses it has
sent in the past. Of course, it is always possible for a server to fail
during the transmission of a response, in which case a client must
by necessity see a truncated response. By increasing the size of the
transmit buffer in our algorithm, we can provide the same appar-
ent consistency. Under almost all circumstances, the child proxy
is able to re-request a missing block before it leaves the transmit
buffer. In the extremely rare case that it does not, and the block
cannot be recovered, the connection to the client may be purpose-
fully severed. By always using either a “Content-Length” header
or chunked transfer encoding (rather than indicating the end of a
response through a “Connection: close” header), we can also en-

1The importance of starting the retrieval of embedded objects as
early as possible was first pointed out by Nielson et al. [16].

sure that in this rare case the client program is able to detect the
error and display a message to the user. The user can then man-
ually reload the page. In summary, connections may be dropped
even without our pair of proxies, and by manipulating the size of
the transmit buffer, we can drive the probability of additional drops
due to unavailable blocks arbitrarily low.

2.3.3 On Statelessness and Soft-State
An important difference between our algorithm and conventional

web caching is that conventional web caches are stateless with re-
spect to their clients. As pointed out by Sandberg et al. [21], state-
less protocols greatly simplify crash recovery in network protocols;
in stateless protocols, a server that has crashed and recovered ap-
pears identical to a slow server from a client’s point of view. Fur-
thermore, a stateless protocol prevents a server from keeping per-
client state, eliminating a potential storage and consistency burden.
For these reasons a stateless protocol is generally preferred over a
stateful one. We justify our use of a stateful protocol as follows: it
outperforms a stateless one, especially over high-latency links, and
the state it stores is used only for performance, not correctness. We
discuss these two points in detail below.

In a delta-encoding protocol such as RFC 3229 [13], a client sub-
mits information about earlier responses of which it is aware with
each subsequent request for the same resource. If the proxy serving
the client is also aware of one of those responses, it can compute a
delta and send it to the client. However, this technique cannot elim-
inate redundant transfers due to aliasing; by definition, an aliased
response contains redundant data from resources other than that re-
quested. Unless a client were to transmit information about earlier
responses for all resources to the proxy, some aliasing could be
missed. Kelly and Mogul presented an algorithm that uses an ex-
tra round trip to catch aliasing [10], but over high-latency modem
lines this additional round trip could introduce significant perfor-
mance reductions. By storing a small amount of state per client on
the proxy, our algorithm avoids extra round trips in the common
case.

Moreover, while our protocol is not stateless, it utilizes only soft
state to achieve its performance gains. A protocol is termed soft-
state if the state stored is used only for performance, not correct-
ness. If the proxy in our algorithm loses information about which
blocks the child has cached, it will result only in the redundant
transfer of data. If the parent thinks the child is caching data that
it is not (either due to corruption on the parent or data loss on the
child), the child will request the data be resent as described in Sec-
tion 2.3.1. If a sufficient number of such resends occur, the child
proxy could proactively instruct its parent to throw out all infor-
mation about the contents of the child’s cache through a simple
extension to our protocol. Such an extension would be particularly
valuable if a child were periodically to switch proxies. In conclu-
sion, we believe the use of per-client state in our protocol is justified
by the combination of its performance benefits and its absence of
an effect on correctness.

3. PERFORMANCE EVALUATION
In this section we describe a detailed evaluation of the ability

of VBWC to reduce bandwidth consumed and—more crucially—
reduce user-perceived time-to-display (TTD). In this evaluation we
concentrate on the domain in which the elimination of redundant
transfers is likely to be fruitful. An evaluation based on full traces
of user activity is left for future work. We start by describing our
methodology and experimental setup, then present our results.
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Figure 6: Our experimental setup. Our instrumented version of
Mozilla and our Java implementation of the child proxy run on the
client machine, which talks to all other machines on the Internet
through a FreeBSD machine using DummyNet to simulate a modem.
The parent proxy (running either the Gzip, VBWC, or Hybrid algo-
rithm) runs on the Internet side of this fake modem.

3.1 Experimental Methodology and Setup
In order to test the ability of our algorithm to reduced the user-

perceived TTD of common web pages, we built the following test
suite. First, we instrumented Mozilla version 1.0.1 to read URIs
from a local TCP port. After reading each URI, our instrumented
browser loads the resource and sends the total load time back over
the socket. This time corresponds to the time from when a user
of an uninstrumented version of the program types a URI into the
URI field on the toolbar until the Mozilla icon stops spinning and
the status bar displays the message, “Done. (x seconds)”.

To this web browser we added a Perl script that takes as in-
put a list of URIs, then loads each one through an instrumented
browser running without a proxy and a second one running through
a proxy using the VBWC algorithm. We simulate a modem using
a FreeBSD machine running DummyNet [20], which adds latency
and bandwidth delays to all traffic passing through it. In our exper-

iments, we configured DummyNet to provide 56 kb/s downstream
and 33 kb/s upstream bandwidth, with a 75 ms delay in either di-
rection. These parameters mimic the observed behavior of modern
modems. The use of DummyNet also allows us to monitor the total
number of bytes transferred across the simulated modem in each di-
rection, and the Perl script records this number after each load. Af-
ter each iteration through the list, the script sleeps for twenty min-
utes before repeating the test, resulting in each URI being loaded
through the algorithm and control approximately every thirty min-
utes. This experimental configuration is illustrated in Figure 6.

In our experiments, Mozilla and the child proxy run on a
750 MHz Pentium III with 1 GB of RAM, while the parent proxy
runs on a 1 GHz Pentium III with 1.5 GB of RAM (as noted below,
however, we limit our caches to a small fraction of the total avail-
able memory). The machine running DummyNet is an 866 MHz
Pentium III with 1 GB of RAM. Both the child and parent ma-
chines were otherwise unloaded during our tests; the DummyNet
machine was not completely isolated, but saw only light loads.

Mozilla consists of over 1.8 million lines of C++ source code.
Rather than familiarize ourselves with the full extent of this code
base necessary to add the VBWC algorithm to it, we implemented
our algorithm in Java atop the Staged Event-Driven Architecture
(SEDA) [26]. Implementing the algorithm in a separate proxy has
the advantage of making it browser neutral (we have also run it
with Internet Explorer), but adds some latency to local interactions.
Worse, it forces us to utilize two separate web caches; one inter-
nal to Mozilla and one in the proxy itself. As such, in the control
experiments Mozilla runs with a 10 MB memory cache, while in
the VBWC experiments Mozilla and the proxy each have a 5 MB
cache. We leave quantifying the advantages of integrating these two
caches as future work, but it is clear that the caches will have some
overlapping data, putting our algorithm at some disadvantage. Our
results are somewhat pessimistic in this sense. The parent proxy
in our tests is also implemented in Java atop SEDA. Altogether,
the parent and child proxy are made up of about 6,000 lines of Java
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Relative Performance of Hybrid Algorithm vs. Gzip

Figure 8: TTD of Hybrid vs. Gzip. This graph shows the median
time-to-display (TTD) of Value-Based Web Caching with compression
(called the “Hybrid” algorithm), versus compression alone (called the
“Gzip” algorithm). For most web sites, the Hybrid algorithm gives a
significant improvement.

code, including an HTTP parser and a specialized string-processing
library.

To compare VBWC against something other than just Mozilla
itself, we implemented a second parent-child proxy pair that sim-
ply compressed each response from any web server using gzip be-
fore sending it over the modem. We do not compress any response
that contains a “Content-Type” header starting with “image”, since
in our workload these are all GIF and JPEG files that are already
compressed. Also, Mozilla includes an “Accept-Encoding: gzip”
header in all its requests, and some origin servers take advantage of
this, responding with “Content-Encoding: gzip” in their response
headers. We do not try to further compress such responses.

Finally, we implemented a hybrid algorithm that uses VBWC but
compresses each new block before sending it to the client. Non-
image responses that are compressed by the origin server are un-
compressed by the hybrid algorithm before they are broken into
blocks; the resulting blocks are recompressed before being trans-
mitted to the client.

Many previous studies in this field have measured bandwidth
saved as a performance metric for algorithms similar to our own.
Instead, we chose to instrument a full web browser. As we will
show below, simple bandwidth savings do not necessarily guaran-
tee an equivalent improvement in TTD, the main component of the
quality of a user’s experience.

3.2 Experimental Results
In this section we examine the results of our experiments, which

ran from approximately 7 PM on November 12, 2002 until approx-
imately 5:30 PM on November 14, 2002.

3.2.1 The Costs of Optimism
For our first result, we analyze the costs of the parent proxy’s di-

gest cache being only loosely synchronized with the child proxy’s
block cache. In all of our experiments, the transmit buffer on the
parent was limited to 100 kB of block data. During our experi-
ments, the parent in our algorithm transmitted a total of 17,768 di-
gests without their corresponding data to the client; for 42 of these,

TTD (s) Percent
Web site Gzip Hybrid Improvement
amazon.com 6.65 5.02 24.5
aol.com 4.31 4.30 0.2
cnn.com 7.28 5.71 21.6
evite.com 3.13 2.36 24.6
fool.com 7.28 5.77 20.7
google.com 0.70 0.68 2.2
mapquest.com 6.27 5.26 16.1
msn.com 2.89 2.16 25.3
msnbc.com 6.89 6.07 11.9
netscape.com 12.33 11.36 7.9
news.com 6.02 6.80 -13.0
nytimes.com 6.32 4.70 25.6
salon.com 7.63 3.29 56.8
sjmercury.com 9.28 6.37 31.4
slashdot.org 4.61 4.80 -4.1
washingtonpost.com 10.32 7.22 30.0
yahoo.com 2.60 1.71 34.2

Table 1: TTD of Hybrid vs. Gzip. This table shows the median TTD
of the Hybrid and Gzip algorithms as represented in Figure 8, as well
as the percent improvement the Hybrid algorithm achieves over Gzip.

the child had already cast out the blocks’ data from its cache, a
0.24% miss rate. Since the cost of a miss is only an additional
round-trip time over the modem, we feel that this low miss rate
clearly justifies our use of an optimistic algorithm.

3.2.2 Bandwidth Savings with VBWC
Next, we examine the bandwidth savings provided by our algo-

rithm. Figure 7 shows the average kilobytes transferred per web
page as a function of the algorithm used. In most cases, the com-
bination of VBWC and gzip (called the Hybrid algorithm in our
figures) outperforms all three other algorithms. However, the sim-
ple Gzip algorithm performs quite well. The HTTP 1.1 standard
allows for such compression to start at the origin server when re-
quested by a client (using the “Accept-Encoding” header field), but
in our experience, very few servers take advantage of this portion of
the standard. In the cases where they do (such as slashdot.org), the
control case is much closer in bandwidth usage to the Gzip case.

In cases where the Hybrid algorithm underperforms Gzip, it is
often due to the granularity of resource modification on those sites.
For example, the spacing between differences on successive ver-
sions of slashdot.org is under 2 kB, and there are many small dif-
ferences. Because of this, over the course of our experiments, only
24% of the main slashdot.org page sent from the parent to the child
was sent as the digests of previously transmitted blocks. In con-
trast, 64% of the main nytimes.com page was sent as the digests
of previously transmitted blocks. Using a smaller average block
size would presumably mitigate the effects of small changes, at the
cost of more overhead. In theory, one could also choose the aver-
age block size dynamically in response to past performance, but we
have not yet investigated this technique.

3.2.3 TTD Reduction with VBWC
Figure 8 shows the median TTD of the Hybrid algorithm for

various web sites, normalized against the TTD of the Gzip algo-
rithm. We use medians instead of means when reporting TTD
numbers because web server response time distributions show very
long tails, especially on loaded web servers like those used in our
experiments. In contrast, server load does not affect the sizes of re-
sponses. The relative performance of the control case and VBWC
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URIs 2,881
Modified URIs 48

Unique payloads 3,639
Aliased payloads 97

(URI, payload) pairs 4,223
Unique blocks 12,328

Aliased blocks 510
Transactions 7,502

w/ modified URIs 1,979
w/ aliased payloads 922
w/ aliased blocks 1,345

Payload sizes (bytes)
Range (min–max) 1–85,463
Median 2,927
Mean 14,909
Sum 54,252,472
Sum of aliased 586,887

Block sizes (bytes)
Range (min–max) 1–8,192
Median 1,588
Mean 2,236
Sum 27,565,326
Sum of aliased 962,677

Transfer sizes (bytes)
Median 1,115
Mean 8,604
Sum 64,545,462
Sum of aliased 1,748,601

Table 2: Statistics for our workload.

without gzip are less interesting—they roughly follow the band-
width differences shown in Figure 7. Table 1 shows the actual times
for each point in Figure 8, as well as the percent improvement the
Hybrid algorithm achieves over Gzip for each web site. The bene-
fits of VBWC are clear from the table and graph. For one web site,
the Hybrid algorithm achieves a 56.8% improvement in TTD; for
three others, it achieves at least a 30% improvement; and for an-
other six it achieves at least a 20% improvement. It performs worse
that compression alone in only two cases. We are quite satisfied
with the performance of the algorithm in general.

3.2.4 Workload Analysis
As a final result, we characterized our workload so as to compare

it to previous traces. To do so, we instrumented our VBWC code
to print the name of each block it receives, the block’s size, and the
URI with which that block is associated. For every occurrence of a
particular block, we noted whether the block had been seen earlier
in the workload in the payload for the same or another URI. The
transfer of blocks seen in the payloads of earlier transactions on the
same URI could be eliminated through sophisticated name-based
techniques such as delta encoding. The transfer of blocks seen only
in the payloads of earlier transactions on different URIs, however,
can only be eliminated through value-based caching. In this anal-
ysis, we found that a total of 34.0 MB of the 61.6 MB transferred
could be eliminated by name-based caching. (Note that choosing
blocks differently could improve this number; our blocking algo-
rithm is sub-optimal for small deltas.) In contrast, 35.3 MB of the
transferred data could be saved by value-based caching, leaving
1.3 MB that could be saved only by value-based caching. This po-
tential 57% savings is over the transactions performed by Mozilla,
which is already maintaining a 5 MB conventional cache of its own.

Overall, the above numbers indicate that there is a good deal of
bandwidth to be saved using named-based caching, while there is
less clear benefit to value-based caching if named-based caching
with delta encoding is already being performed. To qualify the
potential benefits of our algorithm on a more general trace, we ana-
lyzed our workload in the style of Kelly and Mogul [10]. They call
a transaction a pair (U, P ) where U is a request URI and P is a
reply data payload. They say that a reply payload is aliased if there
exist two or more transactions (U, P ), (U ′, P ) where U 6= U ′.
They say that a URI is modified if there exist two or more transac-
tions (U, P ), (U,P ′) where P 6= P ′. We extend their nomencla-
ture as follows. We say that a payload P is a sequence of blocks
{B1, B2, . . . , Bn}. We say that a block B is aliased if there ex-
ist two or more transactions (U, {. . . , B, . . .}), (U ′, {. . . , B, . . .})
with U 6= U ′.

Table 2 shows that 12% of transactions in our workload have
aliased payloads, as compared to the 54% that Kelly and Mogul
observed in their WebTV trace. Furthermore, we found that aliased
payloads account for only 3% of the bytes transferred, as opposed
to 36% in the WebTV trace. These results indicate that our cho-
sen workload demonstrates a comparatively small opportunity for
value-based caching to reduce redundant transfers due to aliasing.
As such, a clear avenue for future research is to test our algorithm
on the WebTV trace. Finally, we note that Table 2 shows 18% of
transactions contain aliased blocks, an additional 6% over the num-
ber that contain completely aliased payloads, indicating the impor-
tance of looking for aliasing at the block level.

4. RELATED WORK
There are a number of unique features to our algorithm and our

experimental approach, but there are also a number of prior studies
that touched upon many of the same ideas. We review them here.

The first work on delta encoding in the web that we know of was
in the context of the WebExpress project [8], which aimed to im-
prove the end-user experience for wireless use of the web. They
noted that the responses to POST transactions often shared similar
responses, and utilized delta encoding to speed up transaction pro-
cessing applications with web interfaces. Deltas were computed
with standard differencing algorithms. Mogul et al. performed a
trace-driven study to determine the potential benefits of both delta
encoding and data compression for HTTP transactions [14].

An innovative technique for delta encoding, called optimistic
deltas, was introduced by Banga, Douglis, and Rabinovich [2]. In
their scheme, a web cache sends an old version of a given resource
to a client over a low bandwidth link immediately after receiving a
request for it. It then requests the current version of the resource
from the origin server, and sends a delta to the client if necessary.
This approach assumes there exists enough idle time during which
the origin server is being contacted to send the original response
over the low bandwidth link, and the authors perform some anal-
ysis to show that such time exists. In any case, their algorithm is
capable of aborting an optimistic transfer early as soon as the cache
receives a more up-to-date response and decides the transfer is no
longer profitable. We believe that optimistic deltas are effectively
orthogonal to our technique, although we have yet to try to combine
the two. Ionescu’s thesis [9] describes a less aggressive approach
to delta encoding.

Several studies of the nature of dynamic content on the web were
performed by Wills and Mikhailov, who demonstrated that much of
the response data in dynamic content is actually quite static. For ex-
ample, they found that two requests with different cookies in their
headers often resulted in the exact same response, or possibly re-
sponses that differed only in their included advertising content [27].
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Later, they found a 75% reuse rate for the bytes of response bodies
from popular e-commerce sites [28].

Several studies of which we are aware looked at the rate of change
of individual web sites. Brewington and Cybenko studied the rate
of change of web pages in order to predict how often search en-
gines must re-index the web [3]; Padmanabhan and Qiu studied the
rates and nature of change on the msnbc.com web site [17]. The
latter study found a median inter-modification time of files on the
server of around three hours. Looking back at our Figure 7 this
result is intriguing, as we found a much higher rate of change in
the actual server response bodies (recall that we sampled the site
approximately every 30 minutes).

Studies of aliasing came later to the web research community.
The earliest of these that we are aware of was by Douglis et al. [5],
who studied a number of aspects of web use, including resource
modification. They noted that 18% of full body responses were
aliased in one trace (although the term “aliasing” was not yet used).
Interestingly, they did not consider this aliasing to be a useful tar-
get of caching algorithms since most of these responses were for
“uncacheable” responses. We note that caching data by its value as
we have done in this study does not suffer from such a limitation.

Alias detection through content digests has been used in the past
to prevent storing redundant copies of data. The Inktomi Traffic
Server [12] and work by Bahn et al. [1] both used this approach.
The main advantage of this technique is that it allows a server to
scale well in the number of clients; as opposed to simply com-
pressing cache entries, the use of digests allows common elements
in the responses to distinct clients to be stored only once.

The HTTP Distribution and Replication Protocol [25] was de-
signed to efficiently mirror content on the web and is similar to the
Unix rsync utility [24]. It uses digests, called content identifiers, to
detect aliasing and avoid transferring redundant data. The protocol
also supports delta encoding in what they call differential transfers.

Santos and Wetherall presented the earliest work of which we are
aware that used digests to directly suppress redundant transfers in
networks by using a child and parent proxy on either end of a low
bandwidth connection [22]. Spring and Wetherall added the idea
of using Rabin functions to choose block boundaries [23]. We have
used both of these ideas in our work. In contrast to ours, both these
algorithms are targeted at the network packet layer. Spring and
Wetherall note that their caching technique introduces the problem
that the caches can become unsynchronized due to packet loss, and
they note that more sophisticated algorithms for caching might be
used. In our optimistic algorithm we address both of these prob-
lems: we allow castout decisions to be driven completely by the
client, where the most information about the actual usage patterns
of data is available, and we provide recovery mechanisms to deal
with inconsistencies. Like the Santos and Wetherall algorithm, we
use MD5 hashes rather than chains of fingerprints to name blocks.
This technique removes from the server the burden of storing all of
the response bodies that the client stores; for a large client popula-
tion this can be a significant savings. Finally, Spring and Wetherall
found only a 15% improvement in bandwidth usage using gzip; we
find this result curious and believe it might have occurred because
they were compressing packets individually, whereas the gzip algo-
rithm is more efficient with larger block sizes.

Rabin fingerprinting was used earlier by Manber [11] to find sim-
ilar files within a file system. Muthitacharoen, Chen, and Mazières
combined his techniques with those of Spring and Wetherall to
build a network file system for use over low bandwidth links [15].
In their system, before writing new data to the server, a client first
sends only the digest of each new block; the server then asks for
the data corresponding to any digests it does not recognize. In web

parlance, their technique is successful because a great deal of file
system writes are due to both resource modification and aliasing.
For example, they note that a file and the backup generated for
it by many popular text editors share much of the same data, but
have different names. Their application is not suited to the opti-
mistic techniques we present here, and thus their protocol requires
an extra round trip. The addition of this extra round trip over a
high-latency link is acceptable if the potential savings is large; we
believe the small size of the average web resource precludes the use
of such round trips, however.

Kelly and Mogul performed a detailed study of aliasing on the
web using traces from the WebTV network and the Compaq cor-
porate network [10]. We recommend their related work section as
an excellent introduction to the space. In that work, they found
a very high percentage of transactions included aliased responses
(54%) versus the percentage whose responses contained redundant
data due to resource modification (10%). Our workload is more
limited; this limitation may explain the disparity in our observed
results. Nevertheless, since aliased payloads are often incompress-
ible, such a distribution would probably improve our relative per-
formance versus gzip. Kelly and Mogul also proposed the basics of
a scheme to take advantage of aliasing over low bandwidth links.
They index caches by both URI and digest. In a response, the par-
ent proxy in their scheme first sends the digests for every block to
the child proxy. Then, the server may optimistically start sending
the resource’s data and accept cancel requests from the child, or
the child may send explicit requests for the data corresponding to
unrecognized digests. We are not aware of an implementation or
performance results thereof for this algorithm.

Finally, another body of work addresses the aliasing problem in
a different way. Chan and Woo [4] use similarity in URIs to find
cached resources from the same origin server related to a given re-
quest, then use a delta encoding algorithm to compute a response
based on one or more cached items. Like our algorithm, theirs
uses specialized child and parent proxies, but they do not spec-
ify a mechanism for keeping these in sync. In a similar approach,
Douglis, Iyengar, and Vo [7] use a fingerprinting algorithm in the
style of Manber as well as URI similarity to identify related docu-
ments. In contrast to our algorithm, they use an extra round trip to
coordinate the client and server. Because they use delta encoding
algorithms rather than a block-based algorithm, these algorithms
have the potential to save more bandwidth, as their deltas can be at
a finer granularity. The addition of an extra round trip in the lat-
ter protocol eliminates the need to maintain per-client state on the
server, but it may prevent the algorithm from providing an over-
all reduction in TTD over high-latency links. Douglis and Iyen-
gar [6] performed a study of several bodies of data, including web
resources, to quantify the ability of algorithms to recognize similar-
ities in resources between which no relationship is known a priori.

5. CONCLUSIONS AND FUTURE WORK
We have presented Value-Based Web Caching, a new technique

for eliminating redundant transfers of data over HTTP links. Our
algorithm detects and eliminates redundant transfers due to both
resource modification and aliasing. In the common case, our al-
gorithm adds no extra round trips to a normal HTTP transaction,
and it does not require any understanding of the response bodies
transferred to achieve performance improvements.

We have used a detailed performance study to compare our algo-
rithm against simple gzip compression, and found that it improves
user-perceived time-to-display (TTD) up to 56.8%. On 58% of the
web sites we studied, our algorithm achieved at least a 20% TTD
improvement. Ours is the first study of which we are aware to
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present performance numbers for this class of algorithm using a
full featured web browser and to report TTD improvements.

There are three areas in which we would like to continue this
work. First, an important step in quantifying the performance of our
algorithm is the use of trace-driven simulations. Our current work-
load was designed to test our algorithm in the areas where we felt
it would be most useful. As such, our results do not guarantee that
users will see a net improvement in TTD by using our algorithm.
Furthermore, comparing our workload with the WebTV trace used
by Kelly and Mogul seems to indicate that there are other opportu-
nities to take advantage of aliasing that are not captured by in our
work to date. As such, a trace-driven simulation of our algorithm
would likely provide valuable additional insight into its behavior.

Second, our current implementation uses a child proxy that is
separate from the Mozilla web browser. This architecture made the
implementation of our algorithm easy, but limits its performance.
It hides some of the reference stream from the child proxy, degrad-
ing the quality of the information fed to the LRU algorithm with
which castout decisions are made. Moreover, by having two sep-
arate caches, our effective cache size is smaller. Often, Mozilla’s
internal cache and the cache in the child proxy contain the same
data; for fairness of evaluation, we have limited their combined size
to the size of Mozilla’s cache in the control case. An integrated
cache should produce strictly better performance results than we
have presented here.

Finally, we would like quantify the scalability of the parent proxy.
As we argued in Section 2, there are good reasons to believe that the
parent proxy should be able to support many simultaneous clients.
It needs several orders of magnitude less storage resources than any
one client, and the throughput of our block recognition and digest-
ing algorithm is sufficient to support over 1,000 clients on a modest
processor. Nonetheless, the scalability of the server plays an im-
portant role in the economic feasibility of deploying our algorithm
within ISPs, so we feel it is important to quantify.
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